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The whole is more than its parts? From explicit
to implicit pose normalization

Marcel Simon, Erik Rodner, Trevor Darrell, Member, IEEE , and Joachim Denzler, Member, IEEE

Abstract—Fine-grained classification describes the automated recognition of visually similar object categories like birds species.
Previous works were usually based on explicit pose normalization, i.e., the detection and description of object parts. However, recent
models based on a final global average or bilinear pooling have achieved a comparable accuracy without this concept. In this paper, we
analyze the advantages of these approaches over generic CNNs and explicit pose normalization approaches. We also show how they
can achieve an implicit normalization of the object pose. A novel visualization technique called activation flow is introduced to
investigate limitations in pose handling in traditional CNNs like AlexNet and VGG. Afterward, we present and compare the explicit pose
normalization approach neural activation constellations and a generalized framework for the final global average and bilinear pooling
called α-pooling. We observe that the latter often achieves a higher accuracy improving common CNN models by up to 22.9%, but
lacks the interpretability of the explicit approaches. We present a visualization approach for understanding and analyzing predictions of
the model to address this issue. Furthermore, we show that our approaches for fine-grained recognition are beneficial for other fields
like action recognition.

Index Terms—Fine-grained classification, Object recognition, Convolutional Neural Networks
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1 INTRODUCTION

THE tremendous progress in image classification over the
past years allowed for automatically recognizing more

and more object categories. This lead towards fine-grained
classification, which is the recognition of visually similar
object categories like bird species [1]. Distinguishing fine-
grained categories is challenging due to the small visual
differences between categories, scarce training data, and
large intra-class variance.

Previous approaches usually detect parts and represent
an object by a concatenation of part features. However, Lin
et al. [2] show comparable recognition rates using second-
order descriptors [3] for encoding local features extracted
with a generic convolutional neural networks (CNNs). Sim-
ilar results were obtained with global average pooling [4].
In this paper, we analyze the differences between these
approaches to common CNN models and previous fine-
grained recognition concepts and show that they achieve
an implicit normalization of object poses.

We first analyze common CNN architectures without
object pose handling like AlexNet and VGG using a novel
visualization technique called activation flow. It traces the
highest class score back to the most influential intermediate
patterns of the CNN. We are able to visualize the learned
decomposition of objects into parts and to quantify the
importance of the foreground object in classification. The
results show that CNN models with several fully-connected
layers for the encoding of local features tend to lose the
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object focus if the object pose is rare. Hence they are usually
inferior compared to fine-grained approaches.

Afterward, we present neural activation constellations as
a reference explicit pose normalization approach. It dis-
covers object parts in an unsupervised way by generating
proposals using a pre-trained CNN. A part constellation
model is then learned to identify the proposals related to
the foreground objects. We build the classification model by
using these for a part-based description and classification.

We compare this approach to α-pooling, which is used as
a final local feature encoding step similar to global average
[5] or bilinear pooling [2]. The global aggregation of local
features followed by a linear classifier leads to a pairwise
matching of local features in the similarity function of the
classifier [6]. Hence we refer to these approaches as implicit
pose normalization approaches. We observe that tasks like
fine-grained recognition require only very few such matches
for correct identification. In contrast, other tasks such as
scenes recognition might require much more matches as the
overall scene matters instead of single objects. We hence
propose to learn the influence of the largest matchings by
learning a parameter α. Depending on its value, the pooling
strategy changes and both global average and single-stream
bilinear pooling can be achieved as special cases.

The approaches increase the accuracy of popular CNN
architectures like AlexNet [7], VGG-VD [8], and ResNet [5]
on three fine-grained recognition tasks significantly by up
to 22.9%. Our comparison reveals that the implicit pose
normalization approach achieves slightly higher recogni-
tion rates. However, the interpretability is missing as it is
not clear, which object parts contributed to a decision. We
address this with a classification visualization showing the
relationship of test and training image regions.

Our comparison also shows how to express the explicit
pose normalization as implicit pose normalization approach
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and vice versa, which reveals additional differences. For
example, only the explicit pose normalization approach
can exploit a valuable constellation model, while only α-
pooling exploits the full detection map instead of the peak
location only. Finally, we compare the transferability of the
approaches to another domain. In action recognition on the
Stanford 40 actions dataset [9], especially α-pooling showed
an advantage reaching up to 87.7%.

This paper combines our previous publications [10],
[11], [12] and adds a wide range of additional aspects and
analysis. In particular, our first contribution is a novel visual-
ization scheme called activation flow for analyzing learned
object decompositions of CNNs. It is a valuable basis for
qualitative and quantitative analysis of trained models.

Our second contribution is an evaluation of the influence
of rare object poses on the recognition process. We show
that rare poses cause CNNs to partially lose the focus on
foreground objects in bird classification. This insight moti-
vates that handling rare object poses is a key component for
improving image classification models.

The third contribution is the presentation of our previous
work in the context of explicit and implicit pose normal-
ization. We compare both concepts and show advantages
of each, which will allow for improving the approaches by
transferring ideas in the future.

Our fourth contribution is an extensive evaluation using
new datasets, an additional CNN model ResNet-50, and an
updated normalization scheme using the matrix root [13]
for α-pooling. The ResNet model uses global average pool-
ing and hence already implicitly normalizes object poses
as explained in Section 5. We show that our approaches
nevertheless improve its accuracy.

Following this introduction, Section 2 reviews relevant
previous work followed by the analysis of generic CNN
models using activation flow in Section 3. Our approaches
for explicit and implicit pose normalization are presented
and compared in Sections 4 and 5. The results of the evalu-
ation and an ablation study are shown in Section 6.

2 RELATED WORK

Our work relates to publications on image classification,
fine-grained classification, part discovery and selection, and
visualization of learned representations. In the following,
we list and compare a selection of relevant works.

Image classification. Fine-grained classification is a
special case of image classification. Prior to 2012, most
computer vision approaches were based on local feature
descriptors like scale-invariant feature transform (SIFT) [14]
or histogram of oriented gradients (HoG) [15] combined
with encodings like bag-of-words [16], fisher vectors [17],
[18], or VLAD [19]. In addition, spatial relationships were
modeled, for example, by spatial pyramid matching [20].
Due to their success in recent years, CNNs trained for image
classification tasks like the ILSVRC classification dataset
[21] are now widely used. Examples are AlexNet [7], VGG-
VD [8], Inception [22], and ResNet [5]. Based on these,
several extensions and improvements have been presented,
including pre-activation ResNets [23], wide ResNets [24],
highway networks [25], leaky rectified linear units [26], and
spatial pyramid pooling [27]. We use generic classification

models as a basis and show how to improve accuracy for
the task of fine-grained classification.

Fine-grained classification. Fine-grained recognition
received a notable amount of attention in recent years.
Starting with part-based models like [28], [29], it devel-
oped to a separate field with its own, usually part-based,
approaches [30], [31], [32] and datasets like Oxford flowers
[33], CUB200-2011 [1], Stanford dogs [34], and the Oxford
IIIT pets dataset [35].

Early works explore a large variety of ideas, which
mostly belong to the area of explicit pose normalization
approaches. For example, Zhang et al. [36] present pose
pooling kernels based on poselet detections of two images
and Yao et al. [37] use classifiers trained on responses of
generated class templates. Branson et al. [30] study inter-
active classification based on part-related attributes. Soon
most publications exploited part location annotations to
further improve the accuracy. For example, Liu et al. [32]
train detectors for parts of a dog face using ground-truth an-
notations and compute localized descriptions. Göring et al.
[38] transfer part location annotations from training images
with similar object pose. Branson et al. [39] gain robustness
against pose variation by warping patches of object parts
to a canonical pose. Zhang et al. [40] learn a hierarchical
detection model, which incorporates deformations of the
parts, in order to increase the accuracy of detection and
hence also of classification.

As annotating object parts is tedious, later works pro-
pose approaches for the case that only the bounding boxes
are annotated [41], [42]. Donahue et al. [43] and Razavian et
al. [44] evaluate the classification of images cropped to the
bounding box with CNNs. Gavves et al. [42] and Krause
et al. [41] use co-segmentation or alignment to identify
corresponding image regions. There are also more generic
approaches, which turned out to work well on fine-grained
tasks. For example, Yao et al. [31] learn a decision tree,
which uses image regions at each node. Chai et al. [45]
aggregate feature within foreground masks generated with
co-segmentation. In contrast to all these approaches, we do
not rely on any ground-truth location annotation, neither
part locations nor bounding boxes.

Starting with publications like [46] and our work [11]
presented in Section 4, there is a noticeable increase in
the number of publications, which do not use any extra
annotations beside the class labels. Xiao et al. [46] cluster
channels of a convolutional layer in a CNN and interpret
each cluster as an object part and use it for part detection.
Zhang et al. [47] mine part detections in a similar manner
from convolutional layers as well and try to learn traditional
detectors from these afterward. Wang et al. [48] exploit the
hierarchical structure of classes, which is often present in
fine-grained tasks. Jaderberg et al. [49] estimate transforma-
tion parameters for the input image to focus the classifica-
tion on relevant image regions. Liu et al. [50] combine the
information from two layers, one for description and one
for localization. Compared to these approaches, our neural
activation constellations approach is able to select only the
foreground related channels of a CNN. It hence allows for
focusing the classification on the foreground object, which
is desirable in our task. In addition, it is easy to apply to any
given pre-trained CNN model without laborious adjusting
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of learning hyperparameters. As shown in the experiments,
it improves the accuracy of very different CNN architectures
without changing hyperparameters.

Implicit pose normalization has only recently achieved
the level of accuracy of explicit pose normalization. In
particular, Lin et al. [2] show the effectiveness of the second-
order pooling strategy [3] for fine-grained tasks. They pro-
posed a two-stream approach which combines two possibly
distinct local features to a single combined representation
using the outer product. We will refer to the case of two
identical streams as it achieves comparable accuracy. Krause
et al. [51] show that also global average pooling of the Incep-
tion architecture [52] can achieve competitive performance.
We introduce the term implicit pose normalization for these
approaches, as pose normalization is obtained by a pairwise
matching of all local features in the similarity function of
the classifier. Our approach generalizes the global average
and second-order pooling used in these approaches and
automatically learns the pooling strategy from data.

Part constellation models. Spatial relationships be-
tween object parts are described by constellation models.
Early works include, for example, Zobel et al. [28], which
fuse single part detection of face landmarks with a coupled
ray model. In this work, however, we focus on approaches
which generate parts and their relationship in an unsuper-
vised manner as part annotations are expensive to obtain.

Fergus et al. [29] and Fei-Fei et al. [53] model the spatial
relationship between generic SIFT interest point detections,
while Riabchenko et al. [54] use Gabor filters. The generic
interest point detector used in these works does not provide
any connection between the detections in two images. In
contrast, our generated part detector proposals provide
related detections across images. This also allows us to
decrease the exponential runtime complexity in the number
of modeled parts present in these approaches to linear
complexity in our approach.

Yang et al. [55] select part proposals using co-occurrence,
diversity, and fitness as criteria. Crandall et al. [56] in-
corporate co-occurring background patterns into the part
selection. Both approaches lead to a selection of background
parts, which is usually not desirable in fine-grained classifi-
cation. In contrast, we are able to identify more foreground
parts due to the modeled spatial relationship.

Discovered object parts are also used in detection frame-
works like the deformable parts model [57]. The filter masks
of the parts are heuristically initialized and optimized for
a maximal detection score. Similar to the works based on
generic interest point detectors [29], [53], the correspon-
dence between parts of different views is missing. Zhang
et al. [58] address this by learning a separate classifier for
each object view. In contrast, our approach leverages the
complete training data as our model can share parts across
multiple views of an object.

Visualization of learned representations. CNNs are
often seen as a “black box” and hence several ideas
have been presented to understand learned models. The
approaches can be roughly categorized into visualizing
learned concepts and visualizing a prediction. Learned con-
cepts can be analyzed by visualizing parameter values, e.g.,
the filter masks of the first layer of a neural network [7],
[59]. Other works maximize the output of a selected (inter-
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Fig. 1. Outline of the activation flow calculation. We first perform a
regular forward pass through the network and determine the highest
scoring class. Afterward, we trace back the most contributing elements
from previous layers. For each identified element, we project its location
on the feature map back to the input image for visualization purposes.

mediate) channel starting from a real [60], [61] or random
image [61], [62], [63], [64] or select image patches achieving
the highest output from a dataset [59]. Predictions can be
visualized using relevance or attention maps [65], [66], [67].
It is also possible to obtain the most relevant training images
using the representer theorem for classifiers [68], [69].

The activation flow presented in this work visualizes
predictions. Previous papers focus on analyzing the rele-
vant input regions or analyzing specific output elements.
However, they do not investigate the relationship between
the intermediate representations learned by a model. In
contrast, we show the learned decomposition of a given
object into corresponding mid-level representations. Fur-
thermore, while previous works stop at mid-level object
representations, our work can visualize the full hierarchy
from full object to low-level edges.

3 ACTIVATION FLOW FOR ANALYZING LEARNED
CNN MODELS

In this section, we analyze generic CNN architectures and
their ability for fine-grained recognition. We use a novel
approach called activation flow to visualize the hierarchy of
intermediate patterns relevant for a prediction. We show
that rare object poses are still challenging for CNNs con-
taining several fully-connected layers.

Approach. Our approach is based on tracing the
highest class score back to those intermediate elements of
the CNN, which has the largest influence on this output.
Fig. 1 shows a simplified outline of the generation process.
The visualization is computed for a single image. We first
perform a forward pass to compute the highest scoring
class. We currently do not consider a possibly similar second
highest class score for clarity in the figure. Afterward, we
recursively go back layer by layer. At each layer, we identify
the input element with the largest positive contribution to
the output element selected in the layer before.

For example, suppose class 131 has the highest score
for an input image in a VGG-VD model. We start at layer
fc8 and identify the input element of this layer, which had
the largest positive contribution to the score of class 131.
Suppose this is element 3821. The input element 3821 of
fc8 is the output of the previous layer fc7. Hence we now
continue to the layer fc7 and identify its input element with
the largest positive contribution to the output element 3821.
The recursion can be continued until the input image.
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Fig. 2. Details about the visualization. We trace back the two highest
contribution elements for each element selected before and project all
elements as a tree to the input image. Earlier layers are marked with
brighter colors.

Each selected element in this process can be connected
to a position in the input image. This is possible because the
intermediate output of a CNN can be interpreted as a two-
dimensional multi-channel feature map as shown in the cen-
ter of Fig. 1. Each point on the feature map can be projected
to a point in the input image. For an accurate projection, it
is important to consider the padding, filter sizes, and strides
used in convolutions and pooling operations.

Fig. 2 shows more details of the visualization. Except for
the class scores, we always identify the l highest elements
and recursively trace back each of them individually. This
results in a tree of elements, where each element is associ-
ated with a certain layer and position in the input image. In
the figure, we visualize the tree using colors ranging from
black for the last layers to red and yellow for earlier layers.

Fully connected layers are a special case. They compute
only a single global feature vector for the whole image and
hence all spatial information is lost. We project elements of
these layers to the image center for visualization purposes.
However, there is no clear corresponding location for these
elements. In the supplementary material, we also present
results when projecting only the convolutional layers.

Fig. 3 shows the activation flow for images of the
CUB200-2011 birds dataset and a fine-tuned VGG-VD
model. In the top row, we show the activation flow for
images showing common bird poses. The flow focuses on
the object itself and even covers semantic parts like the
birds head, belly, and tail. The bottom row shows the flow
for images with rarer bird poses. The network’s focus shifts
away from the object towards background patterns.

Our visualization can be used to analyze limitations of
CNN architectures. For example, the recognition of the top
row images is supported by a wide range of body parts.
Hence, their prediction seems more trustworthy compared
to the images in the bottom row. For example, in the bottom
right image, the prediction seems to be based mostly on
the background. This suggests that the part detection failed
and an approach for accurate part localization might help to
improve the recognition process.

Quantifying object focus. We are interested in

Fig. 3. Activation flow for VGG-VG on CUB200-2011 birds. The top row
depicts common poses, which were correctly classified by the network,
and the bottom row failure cases with rare poses.

whether rare object poses cause CNNs to lose the focus on
the foreground object. The presented activation flow is a
basis for this. We compute two measures: a quantification of
how well a model is able to recognize the full object pose
and a measure of pose rarity.

The quantification uses the presented activation flow,
where we warp the input image to fit the input shape
of the CNN. To keep computation time reasonable, we
compute for each selected output element the l = 2 highest
contributing input elements and limit the recursion to seven
convolution and pooling operations. Given the projected
locations of all selected elements of the activation flow, we
compute how many of these elements are located within
the object. The ground-truth object segmentation is used for
this purpose. The percentage of elements inside the object is
used as the measure in the plot and will be called coverage
in the following. In the supplementary material, we explore
other measures such as the mean distance of elements to
the foreground object. Please note that we ignore fully-
connected layers here as their elements do not have a clear
correspondence to a position in the input image.

The rarity of a pose is computed from ground-truth
part annotations. The locations of all parts in an image are
concatenated. The resulting vectors of all training images are
clustered using k-means. The locations are normalized with
respect to the bounding box and hence robust against trans-
lations and object scale. The cluster centers computed with
k-means represent common object poses. We then define the
rarity of the object pose in a new image by the minimal
distance of its part locations to the cluster centers. The
distance is computed as L2-distance of all visible parts in the
image. We compute the distance to both the original pose
and its flipped variant and use the smaller value. The L2-
distance does not fully represent our understanding of pose
differences. However, missing 3D coordinates and models
prevent applying more sophisticated distance metrics.

The result for AlexNet and the CUB200-2011 birds
dataset is shown in Fig. 4. We can observe that there is an
inverse relationship between foreground object focus and
pose rarity. This means the rarer the pose, the lower is the
focus of the activation flow on the foreground object. The
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Fig. 4. The percentage of elements of the activation flow located on the
object (coverage) versus pose rarity.

TABLE 1
Mean coverage and classification accuracy of different network

architectures using CUB200-2011.

Architecture Accuracy Coverage

AlexNet 52.20% 47.02%
VGG-VD 71.94% 58.96%
ResNet-50 80.35% 65.20%

same conclusion can also be derived from Fig. 3, where
we showed examples of such rare bird poses. However, the
variance in the plot is fairly high suggesting that other fac-
tors influence the coverage as well. We hence also compute
the classification accuracy for the 100 most common and
most rare poses for further evidence. While rare poses are
only recognized in 42% of the cases, the recognition rate on
common poses is 57%.

In Table 1, we compare different network architecture us-
ing the mean coverage and classification accuracy. The mean
coverage increases with more complex and more accurate
models suggesting that a higher classification accuracy is
correlated with a larger foreground object focus.

Observations. Figs. 3 and 4 and Table 1 let us draw
three important conclusions. First, the widely used AlexNet
and VGG-VD models base their decisions on the appearance
of a wide range of body parts. However, the bird’s pose
influences the focus during classification. Rare poses, shown
in Fig. 4 on the right, seem to cause a loss in foreground ob-
ject focus. We explain this with the lack of training data. For
common bird poses, many training images exist and hence
the fully-connected layers learned these poses. Uncommon
bird poses, in contrast, might never occur in the training
data at all. Hence the CNN is not able to recognize the bird
using the appearance of the complete animal. It focuses only
on often seen less deformable subparts like the head.

Second, the comparison between network architectures
shows that there is a correlation between model accuracy
and focus on the foreground object. Hence object focus
might be beneficial for improving classification accuracy
and increasing the object focus further is a promising idea
to further increase accuracy. It is in particular important to
handle uncommon bird poses. In this work, we use explicit
and implicit pose normalization to achieve this goal. The
ResNet-50 model shown in the table already achieves a
certain robustness due to the global average pooling, which
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Fig. 5. The framework of our explicit pose normalization approach.

can be seen by the larger coverage value.
Third, the most important layer for handling pose vari-

ations seems to be last layer, which aggregates the local
features to a single global representation. This layer cor-
responds to the long dark red lines in the activation flow,
which connect the location of pool5 elements and its con-
secutive layer fc6 in our case. It aggregates local part-level
descriptors to a single global object-level representation. In
our part discovery, we are interested in abstract object parts
just below the object level. We hence use the input of this
last aggregation layer for part discovery in our approach.

4 EXPLICIT POSE NORMALIZATION WITH NEURAL
ACTIVATION CONSTELLATIONS

Section 3 showed the limitations of AlexNet and VGG-VD
when handling objects with large pose variation. In this
section, we show how to address this issue with explicit
pose normalization. It can be seen as a replacement for the
ensembles of poses learned by the fully-connected layers.

4.1 Part-based representation
The framework of our explicit pose normalization approach
is shown in Fig. 5. The classification pipeline is based on
localizing discovered parts, extracting local features, and
predicting the class scores using a combination of all part
features. The object parts are discovered by generating
part detector proposals from intermediate representations
of a pre-trained CNN. Afterward, an unsupervised part
constellation model is learned to select the most relevant
proposals for the foreground objects. This approach is called
neural activation constellations and presented in the following
Sections 4.2 and 4.3. For feature extraction, we use the
intermediate activations of a CNN. The representations of
all parts and the global image are concatenated and passed
on to a linear classifier.

4.2 Part detector discovery
Object parts can be generated in an unsupervised way using
a pre-trained CNN. As shown in previous work [59], chan-
nels of a CNN are related to certain patterns in the input
image. We exploit this knowledge by using the channels
of a convolutional layer as part detectors. Given a selected
channel and an input image, we compute a neural activation
map as the flattened gradient of the summed channel output
with respect to the input image. The result is a detection
heat map, in which large absolute values correspond to high
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detection scores. The part location for the image is then
computed as the location of highest response in the map.
We provide more details on the computation as well as a vi-
sualization of neural activation maps in the supplementary
material.

4.3 Unsupervised selection of detector proposals

We obtain one part detector proposal for each channel in
the last convolutional layer of the CNN. This set of all
proposals will be called parts. We now describe an unsuper-
vised approach for selecting the most relevant parts, called
neural activation constellations, which does not require any
location annotations. We assume that relevant parts appear
in a consistent relative location to each other. This exists for
semantic parts, but not for unrelated background parts.

Constellation model. The relationship between parts
is modeled with a part constellation model. We estimate a
multi-view star shape part model Γ, which includes a part
selection and the spatial relationship between these parts.

Our model is defined by Γ = (s, b,d,a), consisting of
the view selection s, part selection b, shift vectors d, and
anchor points a. Similar to other popular part models like
DPM [57], our model also incorporates multiple views of
the modeled objects. For example, the front and the side
view of a car are different and different parts are required to
describe each view. The svn ∈ {0, 1}, 1 ≤ v ≤ V , are latent
variables indicating the view selection for training image
n. We assume that there is only one target object visible
in each image and hence only one view is selected for each
image, i.e.,

∑V
v=1 s

v
n = 1. Each view consists of a selection of

part proposals denoted by P indicator variables bpv ∈ {0, 1},
1 ≤ p ≤ P , one for each of the parts. The anchor points
an ∈ [0, 1]

2 capture the location of the object center in image
n and are latent as no object annotations are given during
learning. The shift vectors dpv ∈ [−1, 1]

2 model the relative
offset of part p to the common root location an.

Each part detector p provides one detected location µ̂pn
per image n. The presence or absence of a part detection
is denoted by the corresponding hpn ∈ {0, 1}. We now
obtain the optimal model parameters Γ using a maximum a
posteriori estimation given the detected locations µ̂

Γ∗ = argmax
Γ

P(Γ | µ̂) . (1)

In contrast to a marginalization of the latent variables,
we obtain an efficient learning algorithm. We apply Bayes’
rule, the common assumption that training images and part
proposals are independent given the model parameters [70],
and independent priors for b and s. In addition, we use a
flat prior for a and d, which means that there is no prior
preference for object locations and part offsets, and obtain

Γ∗ = argmax
Γ

N∏
n=1

 P∏
p=1

P(µ̂pn |Γ)

 · P(b) · P(s) . (2)

The term P(µ̂pn |Γ) is the distribution of the predicted part
locations given the model. If part p is used in view v of
image n, we assume that the part location is normally
distributed around the root location plus the shift vector,
i.e., µ̂pn ∼ N (an + dpv, (σ

p
v)2I) with I denoting the identity

matrix. If the part is not used, there is no prior informa-
tion about the location and we assume it to be uniformly
distributed over all possible image locations in image x(n).
Hence the distribution is given by

P(µ̂ |Γ) =
P∏
p=1

N (µ̂pn |an + dpv, (σ
p
v)

2
I)

tvn,p

(
1

|x(n)|

)1−tvn,p

(3)
where tvn,p = bpv ·hpn ·svn ∈ {0, 1} indicates whether part p is
used and visible in view v, which is itself active in image n.
The prior distribution for the part selection b only captures
the constraint thatM parts need to be selected, i.e., ∀v : M =∑P
p=1 b

p
v . The prior for the view selection svn incorporates

our constraint that a single view is selected for each image.
We will denote the induced set of feasible models byM.

In addition, we assume the variance (σpv)
2 to be constant

for all parts of all views. Hence, the final formulation of the
optimization problem becomes

argmin
Γ∈M

N∑
n=1

P∑
p=1

V∑
v=1

tvn,p‖µ̂pn − (an + dpv)‖
2
. (4)

In the supplementary material, we provide an intuitive in-
terpretation and visualization of this optimization problem.

Eq. (4) is solved by alternating optimization of the model
variables b and d as well as the latent variables a and s
similar to the standard EM algorithm. For both b and s, we
can calculate the optimal value by sorting error terms. For
example, b is calculated by analyzing

argmin
Γ∈M

P∑
p=1

V∑
v=1

bpv (
N∑
n=1

hpns
v
n‖µ̂pn − an − dpv‖

2
)︸ ︷︷ ︸

E(v,p)≥0

. (5)

This optimization can be intuitively solved. First, each view
is considered independently as we select a fixed number of
parts for each view without considering the others. For each
part proposal, we calculate E(v, p). This term describes,
how well the part proposal p fits the view v. If its value
is small, then the part proposal fits well to the view and
should be selected. As E(v, p) ≥ 0, the optimal parts are
the ones with the smallest E(v, p) for each view. In a similar
manner, the view selection s can be determined.

The shift vectors dpv
∗ for fixed b, s, and a are obtained

by setting the derivative to 0:

dpv
∗ =

N∑
n=1

tvn,p · (µ̂pn − an)/(
N∑

n′=1

tvn′,p) . (6)

The formulas are intuitive as the dpv are assigned the mean
offset between anchor point an and observed part location
µ̂pn. The mean, however, is only calculated for images in
which part p is used, i.e., tvn,p = 1. The anchor points can be
obtained in a similar way.

This kind of optimization is comparable to the EM-
algorithm and thus shares the same challenges. Especially
the initialization of the variables is crucial. We initialize a
to be the center of the image and s as well as b randomly
to an assignment of views and selection of parts for each
view. The initialization of d is avoided by calculating it
first. The value of b is used to determine convergence.
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This optimization is repeated with different initializations
and the Γ with the best objective value is used. Learning
the part model with 256 parts for each class of CUB200-
2011 separately with five iterations per class took about 14.0
minutes on an Intel i7 processor with 3.4 GHz. The runtime
is linear in the number of parts, views, and images, and
hence does also scale well to models like ResNet-50, where
we extracted 2048 parts. The inference step for an unseen
test image is similar to the calculations during training.
The parameters s and a are iteratively estimated analog to
Eqs. (5) and (6) for fixed learned model parameters b and d.

Part selection criteria. The learned part model is used
to identify foreground object related parts. In the following,
let νp, 1 ≤ p ≤ P , be binary latent variables for the P
parts denoting whether part p is related to the object. We
formulate our selection as a maximum likelihood estimation

p∗ = argmax
1≤p≤P

P(X |νp = 1) (7)

= argmax
1≤p≤P

N∏
n=1

P(νp = 1 |x(n))P(x(n))

P(νp = 1)
, (8)

where X = {x(n) | 1 ≤ n ≤ N} denotes the training set and
x(n) are assumed to be independent samples. We assume a
flat prior for P(x(n)) and P(νp = 1) and apply log(·):

p∗ = argmin
1≤p≤P

N∑
n=1

log P(νp = 1 |x(n)) . (9)

The model for P(νp = 1 |x(n)) depends on the approach
and the available annotation. In this work, we focus on
the unsupervised case, where no location annotations are
available at all. Details about the supervised and semi-
supervised case can be found in [10].

We assume, that a part is relevant in a training image if
it is visible and part of the view, which is selected for this
image. This corresponds to the variable tvn,p = bpv · hpn · svn
from above. If tvn,p = 1, then the part is considered relevant.
The probability of a part belonging to the foreground object
is hence given by

P(νp = 1 |x(n)) =

{
ε if

∑V
v=1 t

v
n,p = 1

1− ε else
, (10)

where 0.5 < ε < 1. The value of ε captures the confidence
in the assumptions and is less than 1 as they might not hold
in all cases. We use a constant value for all parts and obtain
a simple selection scheme. The parts, which are used by the
learned constellation model in most of the training images,
are selected as most relevant. In contrast, parts occurring at
random locations will be rarely selected by the part model
and hence will also not be selected by Eq. (9).

5 IMPLICIT POSE NORMALIZATION APPROACHES

Recent approaches based on a final global average [5] or
bilinear pooling [2] before the classifier achieve a compa-
rable accuracy as explicit pose normalization approaches.
In this section, we show how these approaches achieve a
pose normalization implicitly. We analyze the influence of
the pooling strategy used before the classifier. The obtained
insights will then lead to the development of α-pooling,
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Fig. 6. Correspondence of functions defined in our model definition
and computational blocks in common CNN architectures. Architectures
are simplified for visualization purposes. Notation: conv - convolutional
block, FC - linear transformation block, GAP - global average pooling,
2AvgP - bilinear encoding.

which generalizes average and bilinear pooling and learns
the optimal pooling strategy from data.

Motivation. Recognition models based on a final
global pooling operation can be defined by (g, h, C) con-
taining the local feature descriptor g : x × l 7→ yl ∈ RD̃ ,
the pooling function h : {yl}l 7→ z ∈ RD and a classifier
C : z 7→ ν ∈ RC . The function g takes an input image x and
location index l to compute the appearance description yl at
this position. The function h aggregates all local descriptors
into a single global representation z and the classifier C
transforms that into the scores ν over all known classes.

In the CNN architecture VGG-VD, g could be interpreted
as the layers up to the last convolutional one, as they com-
pute a grid of local features. The first two fully-connected
layers correspond to h, because they transform the local
features into a single global representation. Finally, the last
linear layer can be interpreted as C. Fig. 6 visualizes this
assignment. In case of Residual Networks, the assignment
is similar with the main difference that h is global average
pooling, i.e., have({yl}Ll=1) = 1

L

∑L
l=1 yl ∈ RD̃ , L ∈ N.

The bilinear pooling model presented in [13] replaces h of
these network architectures with the second-order operator
presented in [3], i.e., hbil({yl}Ll=1) = 1

L

∑L
l=1 yly

T
l ∈ RD̃×D̃ .

The global average or bilinear pooling before the classi-
fier leads to an implicit matching of local features during
classification, more specifically in the similarity function
of the classifier C. For example, suppose we use global
average pooling for h and a linear classifier for C, i.e.,
C(z) = Wz + b, W ∈ RC×D , b ∈ RC . This is a common
selection and used in ResNet, for example. The behavior of
such a model can be analyzed using the distance function
used by the classifier. In this case, we hence analyze the lin-
ear kernel between two average pooled vectors z =

∑L
l=1 yl

and z′ =
∑L
m=1 y

′
m as follows:

〈z, z′〉 ∝ 〈vec

(
L∑
l=1

yl

)
, vec

(
L∑

m=1

y′m

)
〉

= tr

( L∑
l=1

yl

)T( L∑
m=1

y′m

) =
∑
l,m

〈yl,y′m〉 ,

(11)

where we omit the normalization with respect to L2 for
brevity. As can be seen, the similarity of z and z′ is
proportional to the aggregated pairwise similarity of the
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Image 1 Image 2 Image 1 Image 2

Fig. 7. Visualization of local regions which have the largest influence
on the linear kernel. The brighter and thicker the line, the larger is the
corresponding inner product between these local features.

local features. In this paper, we call this pairwise matching
as presented in [6] before.

The 〈z, z′〉 in Eq. (11) is mainly influenced by the largest
inner products between local features 〈yl,y′m〉. Fig. 7 shows
these for VGG-VD and randomly chosen image pairs show-
ing flowers and birds. It can be seen that the highest inner
products occur at relevant semantic object parts in all fine-
grained tasks under consideration. Consequently, the simi-
larity of two images is mostly influenced by the similarity of
corresponding semantic parts occurring in these images. As
all possible location pairs are matched, the actual location
of a part does not influence the overall similarity of two
images. Hence these pooling strategies achieve implicitly
robustness against pose variations.

In case of bilinear pooling, the similarity function is
given by

∑
l,m〈yl,y′m〉

2 and hence only differs in the
square. It increases the relative influence of the highest
matches considerably. This is useful for tasks like bird
recognition, where only a few object parts are important.
However, each recognition task has different properties. In
other tasks like scene recognition, a wide range of elements
in the scene might be important.

Hence it would be desirable to automatically learn the
amount of focus on the highest matchings from data. We
present α-pooling, which achieves that and also contains
global average and bilinear pooling as special cases. We first
present the model definition and afterward explain how α
steers the pairwise matching.

Definition. Our α-pooling generalizes have and hbil to
the learnable, parametric pooling operator halpha. While it
could be used at multiple locations in a CNN architecture,
we only consider it for the final encoding step before the
classifier in this work. In order to achieve the desired learn-
able focus on the largest matches in the similarity function
of the final classifier, we define it as

halpha({yl}Ll=1) = vec

(
1

L

L∑
l=1

alpha-prod(yl, α)

)
(12)

with vectorization function vec(·) and local feature encoding

alpha-prod(yl, α) = (sgn(yl) ◦ |yl|α−1)yTl . (13)

The operations ·α, sgn, ◦ and |·| denote element-wise func-
tions for power, sign, multiply and absolute value. The
local feature encoding alpha-prod(·, α) computes the outer
product of the local feature to the power of α − 1 and the

original feature yl. The power is calculated with the absolute
value as the continuous real exponentiation requires non-
negative bases and the sgn(·) function is used to preserve
the sign. The result of the α-pooling operation has the shape
RD̃·D̃, which is identical to the shape of the vectorized
bilinear pooling output.

The α ∈ R is a differentiable model parameter, which
controls the pooling strategy. It is learned from data with
back propagation as part of the main CNN training. The
gradient of the pooling output with respect to α is given by

∂halpha

∂α
= vec

(
1

L

L∑
l=1

yl(sgn(yl) ◦ |yl|α−1 ◦ log|yl|)T
)
.

(14)
A decay on α was not necessary in our experiments to
achieve convergence. For numerical stability of halpha and
its gradient wrt. α, we add a small constant δ > 0 when
calculating the power and logarithm.

The definition of α-pooling includes global average
and bilinear pooling as special cases. Average pooling can
be obtained with non-negative yl and model parameter
α = 1, i.e., alpha-prod(yl, 1) = eyTl . The result is the
vectorization of a matrix containing yl in every row By
increasing the value of α continuously, the pooling strategy
shifts towards bilinear pooling, which is reached at α = 2:
alpha-prod(yl, 2) = yly

T
l . Since α is learned from data, the

right pooling strategy is automatically chosen. The smooth
interpolation also offers the possibility to analyze differ-
ences when moving between global average and bilinear
pooling. Furthermore, we show how α allows for control-
ling the degree of pose normalization.

Influence ofα . We can analyze the similarity function
between features obtained with α-pooling as in Eq. (11):

〈z, z′〉 ∝
∑
l,m

〈yl,y′m〉〈yα−1l ,y′
α−1
m 〉 . (15)

Compared to average pooling, it includes the factor
〈yα−1l ,y′

α−1
m 〉. This factor vanishes for α = 1 and hence is

identical to average pooling in this case. For bilinear pooling
with α = 2, the factor is equal to the inner product between
the local features and hence we obtain the squared inner
product as before. This formulation allows for analyzing the
influence of α and its meaning for fine-grained recognition.
The first observation is that the larger the value of α, the
bigger is the relative influence of large inner products on
the similarity value. In other words, the similarity value
between two global features is dominated by the similarity
value of the pair of local features, which have the highest
inner product. This is similar to p-norms, for which the
influence of the largest element increases with increasing
p until converging to the maximum norm. In α-pooling, a
very large α has the comparable effect. In Fig. 11 of the
experiments, we will support this theoretical analysis with
an quantitative evaluation.

Analyzing decisions. A main drawback of implicit
pose normalization approaches is interpretability. While we
can easily visualize the parts used in the prediction of an
explicit pose normalization model, the recognition process
is rather unclear for implicit approaches. We present a
visualization approach, which uses the pairwise matching
formulation to relate a prediction to the most influential
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Fig. 8. Visualization on how to express explicit as implicit models.

pairs of regions in the test and training image regions. Please
note that, in contrast to Section 3, we can only analyze the
classifier and do not include the local feature extraction.

Let C be the learned classifier as before. The representer
theorem [68], [69] states, that there exists a dual representa-
tion of C with βn ∈ R, 1 ≤ n ≤ N , such that a prediction for
an image can be computed by

N∑
n=1

βn〈z, zn〉 =
N∑
n=1

∑
l,m

βn〈yl,ynm〉〈yα−1l , (ynm)α−1〉 , (16)

where N is the number of training samples. The z is the α-
pooled feature of the current test image computed from local
features {yl}l. Accordingly, zn denotes the α-pooled feature
of the n-th training image computed from local features
{ynm}m. The βn are the weights of each training image as
also used in the dual formulation of an SVM, for example.
However, the primal variant of the classifier as learned by
CNNs can also be transformed into the dual formulation.
Given this formulation, we can define the influence of a pair
of training and test image region l and m by

γnl,m = βn〈yl,ynm〉〈yα−1l , (ynm)α−1〉 , (17)

which is a single summand of Eq. (16). In the experiments,
we present how this influence can be used to visualize the
most influential training image regions for a given image. In
addition, we will use it to quantify the influence of semantic
parts on the prediction and to analyze the influence of α.
α-pooling as explicit pose normalization model.

While α-pooling models implicitly perform pose normaliza-
tion, it is possible to obtain an explicit pose normalization
model by only slightly modifying the α-pooling framework.
Fig. 8 shows a schematic explanation of the relationship.

It now consists of (g,Ψ, hpart, C). In contrast to before,
the formulation now contains a part detector function Ψ :
x(n) × l 7→ ψl ∈ (0, 1)P ,

∑L
l=1ψl = eP , providing for all

P parts and L locations in an image the probability that the
part is present. The pooling function hpart : {(ψl,yl)}l 7→
vec(

∑L
l=1ψ

α−1
l ·yTl ) ∈ RD now takes both the local features

yl and the detector scores ψl as input. It aggregates over all
locations the outer product between the detector scores ψl
to the power of α and the local feature yl. As ψl is always
positive, we can omit the sign and absolute value function.

This classification model converges to explicit part mod-
eling if there is only one single location with high detection
score for each part, i.e., ψl(p) → 1 for one location lp for
every part p. The resulting feature vector consists of the
local features from only these locations. This special case
also allows for investigating the influence of α. If α = 1, the
part detection scores are ignored and global average pooling
is performed. The larger the value of α, the larger is the
influence of the location with the highest detection score for
a given part. Hence the larger the value of α, the more α-
pooling converges towards explicit pose normalization. A
major difference to our explicit pose normalization model
presented in Section 4 is the part description. In Section 4,
we crop image patches of parts and compute features in-
dependently. In contrast, the features from a convolutional
layer are used in implicit pose normalization.

As detection scores in the real world are not as ideal
as assumed here, implicit approaches are faced with higher
requirements for the local features. They require local fea-
ture descriptors which allow for distinguishing a signifi-
cantly higher number of patterns. While in explicit pose
normalization, only features from corresponding semantic
parts influence the similarity value, all features from all
locations in the image are influencing in case of implicit pose
normalization. Hence it is important that the local features
allow for distinguishing between background and objects
parts as well as between different semantic parts.

Another difference between both approaches is the use
of prior knowledge. Our explicit pose normalization ap-
proach was able to exploit the prior knowledge that a
constellation of object parts exists. As we will show in the
experiments, this leads to an improved accuracy compared
to randomly selected part proposals. The implicit approach
currently cannot exploit such knowledge and it might be a
fruitful research direction in future work.

6 EXPERIMENTS

Our experimental evaluation aims at comparing the ap-
proaches in terms of recognition accuracy as well as the
influence of different components. We present qualitative
and quantitative results for our visualizations as well.

Setup. We evaluate on CUB200-2011 birds [1] (200
classes, 11788 images), Oxford Flowers 102 [71] (102 classes,
8189 images), Oxford-IIIT Pets [35] (37 classes, 7349 images),
and Stanford 40 actions [9] (40 classes, 9532 images). We also
present results using Stanford cars in the supplementary
material. Provided splits are used and the mean class-wise
accuracy is reported. We show results for AlexNet [7], VGG-
VD [8] and ResNet-50 [5] pre-trained on ILSVRC 2012 [21].
We use the pre-trained model of [72] for ResNet-50. Deeper
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models were not possible due to GPU memory limitations
when using large input sizes. In case of Section 4, the last
convolutional layer was used for part discovery and the
second to last fully-connected layer was used for feature
description. All models are fine-tuned using random crop-
ping and flip augmentation. The part model learning of
Section 4.3 is done for each class separately with 5 views,
10 parts per view, and is repeated 5 times. Given the part
locations, we crop a patch of height and width

√
λ ·W ·H ,

λ ∈
{
1
5 ,

1
16

}
, where W and H are the width and height of

the uncropped image, respectively. The features of missing
detections are calculated on a mean image over the training
set. Features of all parts are concatenated and a linear SVM
is trained using flip augmentation. In contrast to [11], we
do not estimate the bounding box for better comparison of
the implicit and explicit normalization approaches, which
decreased the accuracy especially in pet classification with
AlexNet. We also ran the fine-tuning longer resulting in
slightly increased results. Hyperparameters were optimized
using cross-validation. In case of α-pooling, we initialized α
with 2.0. Since α is learned from data, the initialization has
no influence. All parameters including α and the parameters
of g are fine-tuned using flip augmentation and random
cropping. The learning rate multiplier for α was set to
κ = 10. The learning rate is constant at 0.001 and a batch
size of 8 or 16 was used. In the benchmark results, we
use an input resolution of 448 × 448 pixels and follow the
feature normalization of [13], i.e., matrix root, element-wise
signed square root, andL2-normalization, but do not use the
matrix root for ResNet-50 on flowers, pets, and actions as it
yielded a significant decrease in accuracy. The code of our
approaches is available on Github and links are provided in
the supplementary material. We also discuss the run time of
our approaches there.

Bird classification results. Table 2 compares the dif-
ferent approaches for bird species classification on CUB200-
2011 and the benefit of human annotations like bounding
box and semantic part locations. The baseline accuracy is
obtained with a fine-tuned network and is 52.5%, 71.9%, and
80.4% for AlexNet, VGG-VG, and ResNet-50, respectively.
Our approaches can consistently and significantly improve
these results by up 22.9% absolute increase.

In the category of explicit pose normalization, the
ResNet architecture achieves the highest accuracy of all
approaches with 83.4% compared to 81.4% of VGG-VD and
68.5% of AlexNet. We also compare to randomly selected
parts, which is a reasonable approach if the part constella-
tion assumption is not valid. These randomly selected parts
already improve the recognition significantly. The proposed
neural activation constellations model allows to select more
discriminative parts and we can improve accuracy further.

We also compare our discovered parts to ground-truth
part locations. As expected, they increase the accuracy, espe-
cially for AlexNet and ResNet. The part locations obtained
by VGG-VD, however, achieve almost the same accuracy
as the ground-truth parts. It seems that VGG parts are
already very pure and discriminative. This observation is
probably connected to the fact, that most works on fine-
grained recognition use VGG-VD for part discovery and
recognition. It seems that our assumption, that the channels
of last convolutional layer can be interpreted as object part

detectors, applies to the VGG architecture the best.
Moving on to implicit pose normalization with the pre-

sented α-pooling, ResNet-50 obtains the highest accuracy
compared to the other architectures with 86.5%. VGG-VD
with α-pooling achieves almost the same accuracy with
86.1%. The largest gain can be observed for AlexNet, with an
absolute improvement of 22.9% compared to the baseline.

Flower classification results. The results for the Ox-
ford 102 classification task are shown in Table 3. The exper-
iments on this dataset are particularly interesting as flowers
do not have obvious shared semantic parts. We still observe
a moderate increase in accuracy with models. In case of
AlexNet, randomly selected parts do not help to distinguish
the flowers. However, the proposed constellation model-
based selection improves the accuracy by 1.2% and α-
pooling even by another 2%. In case of VGG, random parts
are already helpful and achieve a small increase of 0.9%. The
constellation model and α-pooling improve the accuracy
further similar to AlexNet. For ResNet-50, only the implicit
pose normalization approach achieves an improvement. The
overall only moderate increase in accuracy might be caused
by the already very high baseline accuracy. In addition, the
lack of shared object parts most likely prevents larger gains.

Pets classification. Table 3 also presents the result on
the Oxford-IIIT Pets dataset. Overall the observations of
the flowers dataset also apply in this case. For example,
the accuracy of AlexNet improves by 2.3% with explicit
pose normalization and another 4.2% if α-pooling is used.
The results of ResNet-50 are quite mixed showing a small
decrease for the explicit pose normalization approach and a
slight increase with α-pooling.

Action recognition. We are also interested in the
transferability of fine-grained specific approaches to other
tasks. In particular, we investigate the accuracy of action
recognition from still images in Table 3. Our approaches
consistently improve the recognition process for all models.
There is even a significant improvement with ResNet-50 on
the actions dataset ranging from 1.1% for the explicit to
3.6% for implicit pose normalization. The improvement is
comparable for all models AlexNet, VGG, and ResNet-50.

Influence of the number of parts. A major differ-
ence between the explicit and implicit approach is the
feature dimension. While the implicit approach uses all
parts available, our part selection in the explicit approaches
compresses the feature representation to relevant parts only.
Fig. 9 presents a study on how the number of selected
parts influences the accuracy using VGG-VD and only one
extracted patch per part. The baseline accuracy is 71.9% as
before. Adding only the most relevant part improves the
accuracy by 5.8% and only two parts are required to achieve
78.6%. In contrast, randomly selected parts increases the ac-
curacy much slower as the selection might also include noise
detectors. Two selected parts only increase the accuracy a
bit to 72.8% and ten parts are required for 76.6%. Hence our
constellation-based part selection is well suited for feature
selection in this case.

Influence of the pooling strategy. The main param-
eter of our implicit pose normalization approach is the
learned parameter α, which controls the focus on the largest
matches. We perform an ablation study about the recogni-
tion accuracy using VGG-VD in Fig. 10. We fix the value of α
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TABLE 2
Comparison of our explicit pose normalization approaches on the CUB200-2011 birds dataset.

Method Training annotation Test annotation AlexNet VGG-VG ResNet-50
Bbox Parts Bbox Parts

Previous
Donahue et al. [43], JMLR’14 X X 58.8% - -
Zhang et al. [40], ECCV’14 X X 73.9% - -
Branson et al. [39], BMVC’14 X X 75.7% - -
Krause et al. [41], CVPR’15 X - 82.0% -
Zhang et al. [47], CVPR’16 - 84.5% -
Liu et al. [50], PAMI’16 X X - 77.0% -
Zhang et al. [73], CVPR’16 X X X - 84.6% -
Lin et al. [13], BMVC’17 - 85.8% -
Zheng et al. [74], ICCV’17 - 86.5% -
Li et al. [4], arXiv’17 - - 86.0%

Ours
No part modeling 52.2% 71.9% 80.4%
Explicit (Random part selection) 59.2%± 0.7% 78.6%± 0.2% 82.8%± 0.3%
Explicit (Constellation model) 68.5% 81.4% 83.4%
Explicit (GT parts) X X 76.0% 82.0% 86.1%
Implicit (α-pooling) 75.1% 86.1% 86.5%

TABLE 3
Comparison of the presented pose normalization approaches on the Oxford flowers 102, Oxford-IIIT Pets, and Stanford 40 actions datasets.

Method Oxford Flowers 102 Oxford-IIIT Pets Stanford 40 actions

Previous 84.6% [75], 86.8% [44], 88.1% [76], 88.2% [77], 72.0% [78], 80.9% [79],
91.3% [76], 94.8% [79], 91.4% [80], 92.2% [81], 81.7% [82]
96.1% [83], 96.6% [81]

Ours

AlexNet

No part modeling 90.9% 80.5% 63.8%
Explicit (Random part selection) 90.4%±0.7% 80.5%±0.7% 63.3%±0.5%
Explicit (Constellation model) 92.1% 82.8% 65.6%
Implicit (α-pooling) 94.1% 87.0% 68.8%

VGG-VD

No part modeling 93.7% 91.1% 80.5%
Explicit (Random part selection) 94.6%±0.4% 91.3%±0.3% 82.4%±0.4%
Explicit (Constellation model) 95.5% 91.8% 83.3%
Implicit (α-pooling) 97.1% 93.2% 86.1%

ResNet-50

No part modeling 95.7% 93.6% 84.1%
Explicit (Random part selection) 95.6%±0.3% 91.1%±0.2% 84.2%±0.4%
Explicit (Constellation model) 95.7% 91.6% 85.2%
Implicit (α-pooling) 96.7% 94.2% 87.7%
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Fig. 9. Influence of the number of selected parts on the bird classifica-
tion accuracy on CUB200-2011 with VGG-VD. Compared to the other
experiments, only one patch was extracted per part proposal.

and learn a logistic regression classifier without fine-tuning
on ILSVRC 2012, MIT scenes 67, and CUB200-2011 birds
to compare the behavior on different types of classification
tasks. In case of ILSVRC 2012, we only use 130 training
images per category for efficiency reasons. The dataset
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Fig. 10. Influence of α using VGG16 without fine-tuning. α = 1 corre-
sponds to average pooling and α = 2 to bilinear pooling. α is manually
set in this experiment.

contains a wide range of categories including numerous
fine-grained categories. This seems to result in no particular
preference for specific values of alpha. However, when
moving towards specialized datasets, the properties of the
task change and adapting the pooling strategy is beneficial.
The accuracy improves when moving from average pooling
(α = 1) to a strategy between average and bilinear pooling
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Fig. 11. Influence of α on the contribution of different bird body parts
to the classification decision on CUB200-2011. The higher the value
of α, the higher is the influence of the actual bird body parts to the
classification decision. α is manually set to {1, 1.5, 2}.

until around α = 1.5. The accuracy drops quickly after that
for scene recognition. For CUB200-2011, it increases a bit
further with a peak at α = 2.5 for CUB and only slowly
decreases afterward. This shows that the learned pooling
strategy allows for better adapting to the properties of a
classification task. The right figure shows the average curve
across all datasets. We conclude that α = 1.5 is a good value
if no fine-tuning is used. Please note that we learned α in the
benchmark results and results here only apply to the case of
no fine-tuning. In the supplementary material, we evaluate
how learning α can increase the accuracy and also compare
the learned value of α for different input sizes.

We also investigate the influence of α on the contribution
of body parts on the classification on CUB200-2011 in Fig. 11.
Section 5 presented an approach for measuring the influence
of local matches on the classification score. We relate this
influence to semantic body parts of birds using ground-
truth annotations. The influence is plotted for the values
α ∈ {1, 1.5, 2}. As can be seen, the focus on the bird itself
increases significantly with larger α. In particular, the focus
on the head increases from 11% for α = 1 to 42% for α = 2.
At the same time, the role of background decreases. This
supports the theoretical analysis, that larger values of α
focus the decision on a few relevant object parts.

Classification visualization for α-pooling. The im-
plicit approach α-pooling often outperforms our explicit
model, but lack its interpretability. We explained in Section 5
how to address this by computing the influence of training
image regions on the decision of a given test image. In
Fig. 12, we show the most contributing matches with the
highest γnl,m for our implicit pose normalization approach.
We show two correct and two false predictions taken from
CUB200-2011 and Oxford flowers 102. In each prediction,
we visualize the test image in the bottom left and the
most relevant training image regions of the predicted class
around it. In case of the correct predictions, the focus is
as expected on important object parts. However, analyzing
false prediction delivers more enlightening insights. For
example, in the bottom right, the model confused the dark
red young flowers in the top right of the image with the sim-
ilarly looking stamen of the predicted class. These insights
allow for identifying weaknesses and hence for successfully
improving approaches. In the supplementary, we provide
more examples and also show the activation flow of α-
pooling-based models.
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Fig. 12. Visualization of the most influential training image regions as
presented in Section 5. We show two correct on the left and two false
predictions on the right. Each test image is surrounded by five training
regions, whose annotated influence is given by Eq. (17).

7 CONCLUSIONS

This paper compares recent concepts for fine-grained recog-
nition and presents improvements based on the obtained
observations. We include common CNN architectures using
several fully-connected layers, the explicit pose normaliza-
tion approach called neural activation constellations, and
the global pooling approach α-pooling. Our visualization
technique activation flow showed that common CNN archi-
tectures like AlexNet and VGG-VD lack the ability to handle
large pose variations due to scarce training data and hence
are less suited for fine-grained recognition. The comparison
of neural activation constellations and α-pooling revealed
that both can significantly improve the accuracy of common
CNN models like AlexNet, VGG-VG, and ResNet by up to
22.9%. While α-pooling is often slightly leading, it lacks the
clear interpretability and the incorporation of prior knowl-
edge used in the explicit approach. The former is addressed
with a visualization of classification decisions, which relates
test to training images regions. The latter aspect remains
open for future research. The comparison also revealed
possible directions for explicit approaches such as using the
whole part detection map instead of peak detections only.
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[78] B. Zhou, A. Khosla, À. Lapedriza, A. Oliva, and A. Torralba,
“Learning deep features for discriminative localization,” in CVPR,
2016, pp. 2921–2929.

[79] S. Cai, L. Zhang, W. Zuo, and X. Feng, “A probabilistic collabo-
rative representation based approach for pattern classification,” in
CVPR, 2016, pp. 2950–2959.

[80] X. Zhang, H. Xiong, W. Zhou, and Q. Tian, “Fused one-vs-all
features with semantic alignments for fine-grained visual catego-
rization,” TIP, vol. 25, no. 2, pp. 878–892, 2016.

[81] G. Xie, X. Zhang, W. Yang, M. Xu, S. Yan, and C. Liu, “LG-
CNN: from local parts to global discrimination for fine-grained
recognition,” Pattern Recognition, vol. 71, pp. 118–131, 2017.

[82] A. Rosenfeld and S. Ullman, “Visual concept recognition and
localization via iterative introspection,” in ACCV, 2016, pp. 264–
279.

[83] C. Huang, H. Li, Y. Xie, Q. Wu, and B. Luo, “Pbc: Polygon-
based classifier for fine-grained categorization,” IEEE Transactions
on Multimedia, vol. 19, no. 4, pp. 673–684, 2017.

Marcel Simon received the B.Sc. and M.Sc.
degrees in computer science from Friedrich-
Schiller-Universität Jena, Germany, in 2011 and
2014, respectively. He is currently working at the
same university towards the PhD degree at the
Computer Vision Group under the supervision
of Joachim Denzler. His research interests are
in the field of image classification, fine-grained
recognition, and part-based models.

Erik Rodner earned the Diploma degree in
Computer Science with honours in 2007 from
the Friedrich Schiller University Jena, Germany.
He received his PhD in 2011 with summa cum
laude for his work on learning with few examples,
which was done under supervision of Joachim
Denzler at the computer vision group of the Uni-
versity of Jena. From 2012 to 2013, Erik joined
UC Berkeley and the International Computer
Science Institute as a postdoctoral researcher.
He was now senior researcher and lecturer in

the computer vision group at the University of Jena from 2013 to 2016
and is now researcher at Carl Zeiss AG. His research interests include
domain adaptation, deep learning, visual object discovery, active and
continuous learning, and scene understanding.

Trevor Darrell received the BSE degree from
the University of Pennsylvania in 1988, hav-
ing started his career in computer vision as an
undergraduate researcher in Ruzena Bajcsys
GRASP lab. He received the SM and PhD de-
grees from MIT in 1992 and 1996, respectively.
His group is located at the University of Califor-
nia, Berkeley, where he is on the faculty of the
CS and EE Divisions of the EECS Department.
His group develops algorithms for large-scale
perceptual learning, including object and activity

recognition and detection, for a variety of applications including multi-
modal interaction with robots and mobile devices. His interests include
computer vision, machine learning, computer graphics, and perception-
based human computer interfaces. He was previously on the faculty
of the MIT EECS department from 1999-2008, where he directed the
Vision Interface Group. He was a member of the research staff at
Interval Research Corporation from 1996-1999. He is a member of the
IEEE.

Joachim Denzler earned the Diploma degrees
“Diplom-Informatiker”, “Dr.-Ing.” and “Habilita-
tion” from the University of Erlangen, Germany,
in years 1992, 1997, and 2003, respectively.
Currently, he holds a position as full professor
for computer science and is head of the Com-
puter Vision Group, Department of Mathematics
and Computer Science, Friedrich Schiller Uni-
versity Jena, Germany. He is also Director of
the Michael Stifel Center for Data-Driven and
Simulation Science, Jena. His research interests

comprise the automatic analysis, fusion, and understanding of sensor
data, especially development of methods for visual recognition tasks and
dynamic scene analysis. He contributed in the area of active vision, 3D
reconstruction, as well as object recognition and tracking. He is author
and co-author of over 300 journal and conference papers as well as
technical articles. He is a member of IEEE, IEEE computer society,
DAGM, and GI.


