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Abstract. Deep convolutional neural networks have shown an amazing
ability to learn object category models from large-scale data. In this pa-
per, we present a novel approach for part discovery and detection with
a pre-trained convolutional neural network. It is based on analyzing gra-
dients of intermediate layer outputs and locating areas containing large
gradients. By comparing these with ground-truth part locations, chan-
nels in the network related to semantic object parts are identified. On
the Caltech Birds CUB200-2011 dataset, our approach achieves state-of-
the-art performance in part localization as well as image categorization.
An important advantage is that it can be also applied if no bounding
box annotation is given during testing.

1 Introduction

In recent years, the concept of deep learning [2, 1] has gained tremendous inter-
est in the vision community. A key idea is to jointly train a model for the whole
classification pipeline. A successful model especially for classification are con-
volutional neural networks (CNN) [8]. The very recent work of [6, 10, 9] shows
that pre-trained deep models [8] can also be exploited for classification tasks
on datasets which they were not trained on. Our work follows a similar line of
thought. In particular the questions we were interested in are: “Can we re-use
pre-trained deep convolutional networks for part discovery and detection? Does
a deep model learned on ImageNet [5] already include implicit detectors related
to common parts found in fine-grained recognition tasks?”

The answer to both questions is yes and to show this we present a novel part
discovery and detection scheme using pre-trained deep convolutional neural net-
works. Object representations are often part-based and the benefit is especially
notable in fine-grained classification tasks [14, 3, 7, 4]. Our technique for provid-
ing such a part-based representation is based on computing gradient maps with
respect to certain channel outputs and finding clusters of high activation within.
This is followed by selecting channels which have their corresponding clusters
closest to ground-truth positions of semantic parts. An outline of our approach is
given in Fig. 1. The most interesting aspect is that after a simple training step,
parts can be reliably detected without much additional computational effort
based on the results of the CNN.
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Fig. 1. Outline of our approach during learning: (1) compute gradients of CNN channels
with respect to image positions, (2) estimate activation centers, (3) find spatially related
semantic parts to select useful channels that act as part detectors later on.

2 Part Discovery in CNNs by Correspondence

Part Discovery by Correspondence Most recent deep learning architec-
tures for vision are based on a single CNN comprised of multiple convolutional
and fully connected layers. Important for our approach is that the output of the
convolutional layers is organized in channels from which we now want to identify
those related to object parts. In the following, we assume that the ground-truth
part locations zi of the training images xi are given. However, our method can
be also provided with the location of the bounding box only, but we leave this
for future work. We associate a binary latent variable hk with each channel k,
which indicates whether the channel is related to an object part. Our part dis-
covery scheme can be motivated as a maximum likelihood estimation of these
variables. First, let us consider the task of selecting the most related channel
corresponding to a part which can be written as (assuming xi are independent
samples):

k̂ = argmax
1≤k≤K

p(X | hk = 1) = argmax
1≤k≤K

N∏
i=1

p (hk = 1|xi) p (xi)

p (hk = 1)
. (1)

where X is the training data and K is the total number of channels. In the
following, we assume a flat prior for p(hk = 1) and p(xi). The term p (hk = 1|xi)
expresses the probability that channel k corresponds to the part currently un-
der consideration given a single training example xi. This is the case when the
position pki estimated using channel k equals the ground-truth part position zi.
However, the estimated position pki is likely not perfect, so we assume it to be a
Gaussian random variable distributed as pki ∼ N (µk

i , σ
2), where µk

i is the center
of activation extracted from the gradient map of channel k. We therefore have:

p(hk = 1|xi) = p(pki = zi|xi) = N (zi|µi, σ
2) (2)
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Putting it all together, we obtain a very simple scheme for selecting a channel:

k̂ = argmax
1≤k≤K

N∑
i=1

log p(hk = 1|xi) = argmin
1≤k≤K

N∑
i=1

‖µk
i − zi‖2 (3)

For all channels of all training images, the center of activation µk
i is calculated

as explained in the subsequent paragraph. These locations are compared to the
ground-truth part locations zi by computing the mean distance. Finally, for each
ground-truth part, the channel with the smallest mean distance is selected. The
result is a set of channels, which are sensitive to different parts of the object.
There does not need to be a one-to-one relationship between parts and channels.

In order to robustly localize the center of activation of a channel, we first
calculate the gradient for each channel output with respect to the input image
in a similar fashion as done in [11] for full objects. All gradients are summed up
in order to obtain a single gradient map and a Gaussian mixture model with two
components is fitted to the pixel locations weighted by the normalized absolute
gradient values. We then take the mean location of the most prominent cluster
in the mixture as the center of activation. In comparison to simply taking the
maximum position in the gradient map, this approach is much more robust to
noise as can be seen in the experiments.

Why should this work? The results of [13] suggest that at least in the
special case of deep CNNs trained on ImageNet, each element of a hidden layer
is sensitive to specific patterns in the image. That means the occurrence of a
pattern leads to a substantial change of the output. There is an implicit associ-
ation between certain image patterns and output elements of a particular layer.
In higher layers these patterns become increasingly abstract and hence might
correspond to a specific part of an object. Our method automatically identifies
channels with this property.

3 Experiments

Experimental Setup We evaluate our approach on the challenging Caltech
Birds CUB200-2011 [12] dataset. The CNN framework DeCAF [6] and the net-
work learned on the ILSVRC 2012 dataset provided by the authors of [6] is used
for all experiments. Out of this network, we use the 256 channels of the last
pooling layer for the part detector discovery.

We also apply our part detection approach to the part-based classification
system of [7] replacing the SIFT and color name features by the CNN activations
of the last hidden layer and the part transfer by the presented approach. At the
estimated part positions of the training and test images, squared patches of size
p =
√
n ·m · λ are extracted, where m and n denote the height and width of the

image or the bounding box, depending on whether the bounding box is given or
not. We used λ = 1

9 if the bounding box is unknown and λ = 1
4 if known.
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Fig. 2. Part localization results for the head (white), belly (green) and tail (red) along
with the corresponding gradient maps for two images from the test set. No bounding
box and no geometric constraints for the part locations are used during the localization.

Table 1. Part localization error on the
CUB-2011-200 dataset for our method
w/ and w/o GMM for finding the ac-
tivation centers, our method w/ and
w/o restricting the localization to the
bounding box (BB), and the method
of [7] .

Method Norm. Error

Ours (GMM, BB) 0.16
Ours (GMM, Full) 0.17
Ours (MaxG, BB) 0.17
Part Transfer [7] (BB) 0.18

Table 2. Species categorization performance
on the CUB200-2011 dataset. The bounding
box is either known (BB) or unknown (Full)
at test time.

Method Recognition rate

POOF (BB) [3] 56.78%
Part transfer (BB) [7] 57.84%
Symbiotic (BB) [4] 59.4%
Ours (BB, Est. Parts) 62.53%
DeCAF + DPD (BB) [6] 64.96%

Ours (Full, Est. Parts) 60.17%
Ours (Full, GT Parts) 60.55%

Results Figure 2 presents some examples of our part localization applied to
uncropped test images along with the corresponding gradient maps. The first
quantitative analysis examines to what extent the learned part detectors relate
to semantic parts. After identifying the spatially most related channel for each
semantic part, we can apply our method to the test images to predict the location
of semantic parts. The normalized localization errors calculated according to [7]
are given in Table 1. There are groups of parts that are associated with the
same channel. The results of the part-based classification are given in Table 2. In
contrast to other methods, our approach can perform fine-grained classification
on full images without a manual preselection of the area containing the bird.

4 Conclusions

We very briefly presented a novel approach for object part discovery and detec-
tion with pre-trained deep models. We make use of the high-level knowledge of
CNNs to discover useful parts for a fine-grained recognition task by analyzing
gradient maps of deep models and selecting activation centers related to anno-
tated semantic parts. After this simple learning step, part detection basically
comes for free when applying the deep CNN to the image. In contrast to previ-
ous work [7], our approach is also suitable for situations when the ground-truth
bounding box is not given during testing.
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