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Abstract
We present new methods for batch anomaly de-
tection in multivariate time series. Our methods
are based on maximizing the Kullback-Leibler
divergence between the data distribution within
and outside an interval of the time series. An
empirical analysis shows the benefits of our algo-
rithms compared to methods that treat each time
step independently from each other without opti-
mizing with respect to all possible intervals.

1. Introduction
Scientific data increases with respect to both volume and
dimensionality. Manually analyzing large-scale multivari-
ate data is therefore intractable and automatic methods are
needed to structure data and point researchers to the most
interesting parts of scientific measurements. We focus on
detecting anomalies in time series, which is an essential
task, e.g., in climate and ecosystem studies (Zscheischler
et al., 2014), oceanic research (Mı́nguez et al., 2012), or in
industrial processes (Darkow et al., 2014).

The survey article of (Chandola et al., 2009) categorizes
anomaly event detection methods into six main groups.
Classification-based methods utilize common classifica-
tion techniques, such as neural networks, Bayesian net-
works (Dieh et al., 2002), or Support Vector Machines (Ma
& Perkins, 2003) and learn their models by sliding win-
dows strategies. Anomalies can also be detected by con-
sidering the distance to the kth nearest neighbor (Byers &
Raftery, 1998; Bodesheim et al., 2015) or the relative den-
sity (Chiu & Fu, 2003). Clustering techniques (Smith et al.,
2002) group similar data into clusters leading to anomalies
being far from the cluster centroids (Smith et al., 2002). An
intuitive strategy is based on statistical modeling, where
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anomalies are assumed to be points that do not fit to a
previously estimated statistical model (Anscombe, 1960;
Mı́nguez et al., 2012). Other approaches are based on in-
formation theory (Ando, 2007; Bodesheim et al., 2012) or
spectral analysis (Shyu et al., 2003), where subspaces of
the normal data are detected.

All of these methods determine an anomaly score for each
point in the time series individually. In contrast, we pro-
pose a method that directly considers the detection of con-
tiguous intervals, an important property for scientific data
analysis. Time intervals whose distribution is considerably
different from the rest of the time series can be considered
as anomalies. This is done by maximizing a divergence
criterion between the distributions. Depending on the as-
sumptions on these distributions, we derive different meth-
ods that allow for batch detection of anomalies.

The most related paper to ours is the method proposed by
(Liu et al., 2013), which also uses a divergence criterion to
detect changes in the data. However, their method makes
use of the more general f -divergence and directly estimates
the ratio of the two densities. Since we are optimizing over
all possible intervals instead of only a window of fixed size,
we rely on efficient update formulas, which are not avail-
able for the methods proposed in (Liu et al., 2013). The
paper of (Görnitz et al., 2015) combines a hidden Markov
model with a latent one-class SVM for detecting time se-
ries containing an anomaly. Their method requires some
kind of supervision to learn a state model and also does not
directly focus on anomaly localization in contrast to our
approach.

In the following sections, we give a brief description of
the problem, the general framework we propose for batch
anomaly detection as well as specific algorithms. Subse-
quent experiments show the properties and benefits of the
algorithms especially with respect to single point anomaly
detection. Furthermore, we propose average precision and
an intersection-over-union criterion as a suitable evaluation
methodology for anomaly detection in time series.
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2. Maximally divergent intervals (MDI)
Definitions and problem description The basic idea be-
hind our approach is that an anomaly interval within a data
distribution is significantly different from the rest of the
time series. Therefore our main objective is to be able to
find intervals in a time series (xt)

n
t=1 with xt ∈ RD being

a multivariate observation at time t.

Let I = {t | t1 ≤ t < t2} be an interval, where data points
are assumed to be sampled from pI . The remaining set of
data points is denoted by Ω = {1, . . . , n} \ I with the data
distributed by pΩ. In order to find those intervals: i) we
need to define a parameterized model for the distributions
pI and pΩ that can be estimated from the data, and ii) be
able to calculate the “difference” between pI and pΩ.

For the latter, we propose to use the Kullback-Leibler (KL)
divergence to measure the difference between distributions.
Furthermore, we model the data distributions either by ker-
nel density estimation (KDE) or multivariate Gaussian dis-
tributions. These two models allow us to compute the KL
divergence in an efficient manner.

Maximizing the Kullback-Leibler divergence In the
following, we assume the data points in either Ω and I to
be sampled independently from each other. This is for sure
a severe assumption that does not hold for relevant time
series, however, we will demonstrate later on how the de-
pendencies between subsequent data points can be handled
with a simple pre-processing step. The Kullback-Leibler
divergence of two distributions pΩ and pI is defined as:

KL(pI , pΩ) =

∫
pI(x) log

pI(x)

pΩ(x)
dx . (1)

The KL divergence is zero for identical distributions and
large for “significantly different” data distributions. We ap-
proximate it using an empirical expectation over the set of
anomalous points leading to:

KLI,Ω =
1

|I|
∑
t∈I

(log pI(xt)− log pΩ(xt)) (2)

This resulting criterion is very intuitive since it is calculat-
ing the differences of log-likelihoods for pI and pΩ. To find
the interval belonging to an anomaly, we maximize the KL
divergence with respect to the interval I:

Î = argmaxI∈I KLI,Ω . (3)

The set I contains suitable intervals and is important to in-
tegrate prior expectations about anomaly intervals, such as
a range of possible interval sizes. Naive brute-force opti-
mization of the empirical KL divergence requiresO(|I|·T )
operations, where T is the time needed to evaluate the KL
divergence and I is usually O(n · n′) with n′ being the

maximum size of an anomaly interval. A property of the
KL divergence is its asymmetry, KLI,Ω 6= KLΩ,I . Other
work (Liu et al., 2013) often relied on a symmetric version
of it. We use KLI,Ω for reasons theoretically explained
later on and validated in our experiments. To obtain m
anomalies, a non-maximum-suppression method (Neubeck
& Van Gool, 2006) is used to select the m non-overlapping
intervals with highest divergence.

MDI with kernel density estimation (MDI KDE) A
very flexible way to model and estimate distributions is ker-
nel density estimation (KDE). For a given kernel function
K, the estimate for pI is defined by:

pI(x) = 1
|I|
∑

t1≤t<t2
K(x,xt) (4)

for an arbitrary multivariate observation x. We use the
same model for pΩ. As a kernel function, we use the Gaus-
sian kernel normalized such that pI is a proper density.

Straightforward computation of the KL divergence for pI
and pΩ estimated by kernel density estimation requires
O(n2) operations (distance calculations). Together with
our brute-force optimization, this yields anO(n3 ·n′) algo-
rithm, which is only practical for small time series. How-
ever, the idea of cumulative sums is used to achieve a
significant speed-up (Viola & Jones, 2004). Let K =
(Kt,t′) ∈ Rn×n be the kernel matrix of the time series.
We compute the cumulative sums in this symmetric ma-
trix along a single axis: Ct,t′ =

∑
t′′≤t′ Kt,t′′ which can

be pre-computed in O(n2) time. Since we only need to
compute our kernel density estimate for points of the time
series, we can evaluate the estimates in constant time:

pI(xt) =
1

|I|
(Ct,t2−1 − Ct,t1−1) , (5)

pΩ(xt) =
1

n− |I|
(Ct,n − Ct,t2−1 + Ct,t1−1) . (6)

After computing the kernel matrix and cumulative sums in
O(n2) time, we get an asymptotic time ofO(n′) for evalu-
ating the KL divergence and a total time ofO(max(n2, n′2·
n)) for finding the maximally divergent interval.

MDI for normally-distributed data (MDI Gaussian)
Another possibility to model the data distributions is a
Gaussian model for pI and pΩ:

pI(x) = N (x | µI ,SI), pΩ(x) = N (x | µΩ,SΩ) (7)

Estimating the mean vectors and covariance matrices can
be also achieved with integral series. The exact KL diver-
gence even has a closed form solution (Duchi, 2007):

KLI,Ω =
1

2

(
trace(S−1

Ω SI)

+ (µI − µΩ)TS−1
Ω (µI − µΩ)

−D + log(|SΩ|)− log(|SI |)
)
, (8)
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which we can use for an evaluation of the divergence in a
time independent of n, yielding a total computation time of
O(n′ · n).

Depending on further assumptions on the distributions, in-
teresting connections to related techniques can be derived.
For example, when we assume a global shared covariance
matrix (S = SI = SΩ), eq. (8) reduces to KLI,Ω =
(µI − µΩ)TS−1(µI − µΩ) resembling a Mahalanobis
distance also used in Hotelling’s T 2 test (MacGregor &
Kourti, 1995). Furthermore, we can assume identity matri-
ces for the covariances, which reduces eq. (8) to the squared
Euclidean distance between the means. The expression in
eq. (8) also justifies our choice of KLI,Ω instead of KLΩ,I

or a symmetric version (Liu et al., 2013). For a univariate
time series, KLΩ,I is given by:

1

2

(
SΩ

SI
+

(µI − µΩ)2

SI
− 1 + log(SI)− log(SΩ)

)
,

and we can see that for small values of SI , we get high
values of the KL divergence. Therefore, a maximization
of KLΩ,I would prefer intervals of low variance. In con-
trast, KLI,Ω is not affected by this phenomenon since SΩ

is estimated from a large portion of the time series.

Temporal context with time-delay embedding A ma-
jor drawback of our algorithm so far is the assumption of
independent data points in the time series, which is only
valid for trivial academic cases. However, modeling the de-
pendency can be done with a simple transformation of the
time series. In particular, we use a multivariate time-delay
embedding (Smets et al., 2009; Kantz & Schreiber, 2004),
where the data points of the new time series are the concate-
nation of the last k time steps of the original time series, i.e.
x′t = (xt,xt−1, . . . ,xt−k+1). Whereas this embedding
leads to a smoothing of the distance matrix for our MDI
KDE approach, it allows our MDI Gaussian approach for
calculating and exploiting correlations between subsequent
data points. For example, a change of frequency in the time
series, can only be detected by our methods with a proper
embedding, such as time-delay.

Multiple methods for estimating an “optimal” value for k
have been proposed in the literature for univariate time se-
ries (Hegger et al., 1999). We developed a method that
allows for optimizing k even for multivariate time series.
However, the preliminary results we obtained when com-
bining this hyperparameter tuning method with our MDI
approach are beyond the scope of this paper. In our current
experiments, we therefore fix k = 3 for all methods.

3. Experiments
Evaluation criteria, baselines, and implementation de-
tails Previous methods in the area of anomaly detection,
typically return a novelty score for each of the data points
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Figure 1. Resulting scores of two algorithms (blue and green)
achieving the same AUC performance (0.75) with respect to the
red ground-truth interval but a significantly different AP detection
performance (0.0 for blue vs. 1.0 for green).

in the time series. Therefore, a common choice for evalua-
tion have been ROC curves and the area under these curves
(AUC). However, our method returns scored time intervals
directly and therefore differs from previous algorithms. We
argue that in this case also a proper detection evaluation cri-
terion needs to be used, which also better reflects the expec-
tations of researchers about an algorithm’s performance.
Therefore, we count detected intervals as correct if they
have an intersection over union ratio of more than β = 0.5
with a ground-truth anomaly interval. Evaluation is then
done using recall-precision curve and the average precision
(AP) metric. Figure 1 shows an example, where two algo-
rithms have the same AUC but a significantly different AP
performance.

We compare our method to the following baselines:
Hotelling’s T 2 method (MacGregor & Kourti, 1995) and
kernel density estimation operating on single data points
in the time series and learned with all of the points. To
allow for AP computation and a fair comparison, we use
multiple thresholds on the scores to group single point de-
tections into intervals. All of the obtained intervals are then
filtered with non-maximum-suppression (NMS) (Neubeck
& Van Gool, 2006) and receive as a score the minimum
value of the single-point detection score estimated by the
baseline.

All of the methods evaluated use a time-delay preprocess-
ing of k = 3 and a subsequent NMS to obtain the 5 best
scored non-overlapping intervals. Our MDI methods opti-
mize over all possible intervals with sizes from 10 to 50.

Synthetic dataset We first test our algorithms on a syn-
thetic dataset comprised of functions sampled from a Gaus-
sian process prior (Gaussian kernel, σ = 1). The time se-
ries are perturbed at randomly sampled intervals with sizes
ranging from 5% to 20% of the length of the whole time
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Table 1. Results of our synthetic experiment for several baselines
and several methods derived from our maximum divergent inter-
val (MDI) framework. We use average precision (AP) and area
under the ROC curve (AUC) as performance measures.

Method/AP MS MSH AC FC MS5 FC5 AC5

Hotelling’s T 2 test (pointwise) 0.88 0.07 0.12 0.18 0.10 0.16 0.06
KDE (pointwise) 0.90 0.10 0.13 0.00 0.18 0.04 0.29
Ours, MDI KDE 0.97 0.12 0.20 0.00 0.82 0.00 0.43
Ours, MDI Gaussian (full cov.) 1.00 0.44 0.79 1.00 1.00 0.82 0.62
Ours, MDI Gaussian (no cov.) 0.84 0.14 0.02 0.00 0.45 0.01 0.19
Ours, MDI Gaussian (shared cov.) 0.32 0.06 0.01 0.01 0.10 0.04 0.04

Method/AUC MS MSH AC FC MS5 FC5 AC5

Hotelling’s T 2 test (pointwise) 0.98 0.58 0.92 0.94 0.72 0.82 0.80
KDE (pointwise) 0.98 0.56 0.77 0.72 0.82 0.61 0.82
Ours, MDI KDE 0.95 0.52 0.65 0.39 0.90 0.34 0.71
Ours, MDI Gaussian (full cov.) 1.00 0.76 0.94 0.97 0.99 0.90 0.87
Ours, MDI Gaussian (no cov.) 0.90 0.54 0.69 0.46 0.87 0.45 0.75
Ours, MDI Gaussian (shared cov.) 0.90 0.62 0.80 0.58 0.79 0.65 0.71

series, which is set to 250. We simulate the following types
of anomalies: (1) mean shift (MS): we set x′t = xt − µ
with µ ∈ [3, 4] within the anomaly region, (2) mean shift
hard (MSH): MS with µ ∈ [0.5, 1], (3) amplitude change
(AC): multiplying one dimension of the data points with
1 + g(t) with g being a Gaussian window centered in the
interval and with 2σ matching the interval length, (4) fre-
quency change (FC): one dimension of the time series is
sampled from a non-stationary Gaussian process prior (Pa-
ciorek & Schervish, 2004) with a change of the kernel
hyperparameter within the anomaly interval. All of these
types have 20 univariate (MS, MSH, AC, FC) and 20 mul-
tivariate (D = 5) instances (MS5, AC5, FC5) in the dataset.
Note that the anomaly interval can only be detected in one
dimension of the multivariate instances and our algorithms
do not have information about the dimension. We will re-
lease the code for generating the dataset and code for our
algorithms to ensure reproducibility.

Results of our synthetic experiments The results of our
synthetic experiments are given in Tab. 1 for AP and AUC
performance. As can be seen from the AP results, the best
method is MDI Gaussian with a full model for the covari-
ance matrices. MDI KDE is not able to deal with frequency
changes, since the correlations between the dimensions of
subsequent data points are not taken into account. This also
holds for the “no cov.” and “shared cov” versions of MDI
Gaussian. MDI Gaussian “full cov.” is also clearly the best
method with respect to AUC performance, however, there
are a lot of cases where the AUC performance value of an-
other method would not reveal the nearly random detection
performance measured by AP.

Application of MDI to real datasets Meteocean data
(significant wave height, Hs, wind speed, W and sea level
pressure SLP ) in a location near the Bahamas in the At-
lantic Sea (23.838 N, 68.333 W) were used in these tests.
Six months of hourly data, from June 2012 until November
2012 were extracted from the National Data Buoy Center
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Figure 2. Boxes in colors represent historical hurricanes Isaac,
Rafael and Sandy and grey shaded areas MDI Gaussian detec-
tions. The false-positive right after Isaac might be related either to
a local storm or to the reminiscences from hurricane Leslie pass-
ing these days by Bermudas.

from the NOAA1. This period corresponds to the Atlantic
hurricane season, which in that year was specially active
with 19 tropical cyclones (winds above 52 km/h) were 10
of them became hurricanes (winds above 64 km/h). In con-
trast to our synthetic dataset, the anomalies have an effect
on multiple variables at once.

We have applied the MDI Gaussian method to these three
variables and compared the results with the historical hurri-
canes at Bahamas (Figure 2). The boxes in color represent
the official duration of the three main events of that season
that passed near our location, hurricanes Isaac, Rafael and
Sandy respectively. Grey shaded areas represent the MDI
intervals detected by the model. Note that in general the
ground-truth areas are larger than the detections, because
they span the entire lifetime of the hurricane and not just
its presence at the Bahamas.

4. Discussion and conclusions
We presented methods to detect anomalies in time series.
All of our methods maximize a KL divergence criterion
that allows for finding intervals in time series that signif-
icantly differ from the rest with respect to their data distri-
bution. We propose several variants for modeling the data
distribution (kernel density estimation and different Gaus-
sian assumptions) and analyze their particular benefits and
drawbacks in experiments. In summary, our methods allow
for efficient batch detection of anomalies in multivariate
time series and are a useful tool for data discovery in the
natural sciences. Future work will be focused on automati-
cally inferring the number of anomalous intervals.

1http://www.ndbc.noaa.gov/
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