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Abstract. The concept of probabilistic Latent Semantic Analysis (pLSA)
has gained much interest as a tool for feature transformation in image
categorization and scene recognition scenarios. However, a major issue
of this technique is overfitting. Therefore, we propose to use an ensemble
of pLSA models which are trained using random fractions of the training
data. We analyze empirically the influence of the degree of randomization
and the size of the ensemble on the overall classification performance of
a scene recognition task. A thoughtful evaluation shows the benefits of
this approach compared to a single pLSA model.

1 Introduction

Building robust feature representations is an important step of many approaches
to object recognition. Feature transformation techniques, such as principal com-
ponent analysis (PCA) or linear discriminant analysis (LDA) offer the possibility
to reduce the dimension of an initial feature space using a transformation esti-
mated from all training examples. The main benefit is a compact representation,
which exploits that feature vectors in high-dimensional spaces often lie on a lower
dimensional manifold.

Within the typical bag-of-features (BoF) approach to image categorization,
the reduction of feature vectors using probabilistic Latent Semantic Analysis
(pLSA) showed to be beneficial for the overall classification performance [1, 2].
The pLSA approach [3] originates from a text categorization scenario, in which
a document is represented as an orderless collection of words. With pLSA the
representation can be reduced to a collection of latent topics which generate all
words of a document. It is natural to transfer this idea to an image categorization
scenario and describe an image as a collection or bag of visual words [2]. An
estimated distribution of visual word occurrences can be compressed into an
image specific distribution of topics. As argued by [4], the pLSA approach has
severe overfitting issues. This is due to the number of parameters, which increases
with the number of training examples.

In this work, we describe a technique which prevents overfitting by building
an ensemble of randomized subspaces and which significantly increase the ro-
bustness and discriminative power of pLSA reduced features. The basic concept
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Fig. 1. The asymmetric model of probabilistic Latent Semantic Analysis (pLSA) in
plate notation: (observable) visual words w are generated from latent topics z which
are specific for each image d (Wi number of visual words, D number of images).

is similar to the random subspace methods of Ho [5] and Rodriguez et al. [6].
Instead of generating an ensemble of classifiers, our approach builds an ensemble
of pLSA models which are used for feature transformation. This idea is related
to multiple pLSA models used in Brants et al. [7]. Their approach exploits the
diversity of generated models due to different random initializations of the EM
algorithm which is used to estimate a model. In contrast to that, we generate
multiple diverse feature transformations by utilizing the basic idea of Bagging
[8] and train each model using a random fraction of the whole data.

Our method can directly be used for the application of scene recognition as
described in Bosch et al. [2]. The goal is to categorize an image into a set of
predefined scene types, such as mountain, coast, street and forest. Due to the
high intraclass variation and low interclass distance, visual words tend to form
groups of equal semantic meaning, which can be estimated using pLSA.

The remainder of this paper is structured as follows: The pLSA model and
its connections to other approaches are described in Sect. 2. Section 3 presents
and discusses our method of generating pLSA-models using a randomization
technique. Experimental results within a scene recognition scenario are evaluated
in Sect. 4 and show the benefits of our approach. A summary of our findings
conclude the paper.

2 Probabilistic Latent Semantic Analysis

A standard approach to image categorization is the bag-of-features (BoF) idea. It
is based on the orderless collection of local features extracted from an image and
a quantization of these features into V visual words wj , which build up a visual
vocabulary. Images {di}i can be represented as a set of histograms {cji}i which
counts how often a visual word wj is the best description of a local feature in a
specific image di [2]. Therefore this raw global feature vector associated with an
image has as many entries as elements in the visual vocabulary. Especially in the
context of scene recognition, it has been shown that the dimensionality reduction
of BoF histograms using probabilistic Latent Semantic Analysis (pLSA) leads
to performance benefits.
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2.1 pLSA Model

The pLSA model, as shown in Fig. 1, models word and image (document) co-
occurrences cji using the joint probability p(wj , di) of a word wj and an image
di in the following way:

p(wj , di) = p(di)
Z∑

k=1

p(wj | zk) p(zk | di). (1)

For the sake of brevity, we use the same notation principles as in the original work
[3], which abbreviates the eventW = wj with wj and skips the formal definition
of the random variables W,Z and D. Equation (1) illustrates that the pLSA
model introduces a latent topic variable Z and describes all training images as a
collection of underlying topics zk. Note that this model is unsupervised and does
not use image labels. By modeling all involved distributions as multinomial, it is
possible to directly apply the EM principle to estimate them using visual word
counts cji [3]. Additionally, we can rewrite (1) in matrix notation using H =
[p(wj , di)]j,i, T = [p(zk | di)]k,i, M = [p(wj | zk)]j,k and the diagonal matrix
D = [p(di)]ii, which yields:

H = M ·T ·D . (2)

This suggests a strong relationship to non-negative matrix factorization (NMF)
as introduced by Lee and Seung [9]. In fact, it was highlighted by [10], that NMF

of observed values Hji = cji

(∑
j′i′ cj′i′

)−1

with Kullback-Leibler divergence is
equivalent to the pLSA formulation which leads to an instance of the EM prin-
ciple. In the subsequent sections, we will refer to the matrix M of topic-specific
word probabilities as pLSA model, because it represents the image independent
knowledge estimated from the training data.

2.2 pLSA as a Feature Transformation Technique

In [2], the pLSA technique is used as a feature transformation technique, similar
to the typical application of PCA. The whole model can be seen as a trans-
formation of BoF histograms hi = [Hji]j into a new compact Z-dimensional
description of each image as a vector of topic probabilities ti = [p(zk|di)]k.

Given an image with an unnormalized BoF histogram h that is not part
of the training set, a suitable feature vector t has to be found. With a single
image, the model equation (2) reduces to h = Mt and the estimation of t can
be done by applying the same EM algorithm used for model estimation but
without reestimation of the pLSA model (matrix) M. This idea is known as
fold-in technique [3] and equivalent to the following NMF-optimization problem:

t(M,h) = argmin
t′

KL(h̃,Mt′) w.r.t. to
∑

k

t′k = 1 , (3)

using the normalized BoF histogram h̃ =
(∑

j hj

)−1

h and the Kullback-Leibler
divergence KL(·, ·).
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3 Randomized pLSA

As pointed out by Blei et al. [4], the estimation of the pLSA model leads to
overfitting problems. This can be seen by considering the number of parameters
involved which grows linearly with the number of training examples. A solution
would be to use Latent Dirichlet Allocation [4] which demands sophisticated
optimization techniques. In contrast to that, we propose to use an ensemble
build by a randomization technique to solve this issue. As opposed to [7], which
exploits the diversity of pLSA models resulting from random initializations of
the EM-algorithm, we use a randomized selection of training examples, similar
to the idea of Random Forests [8] and Random Subspaces [5].

Let {Ml}Ml=1 be an ensemble of pLSA models Ml = M(T l) estimated using
a random fraction T l of the training data T . We do not select training exam-
ples (h, y) ∈ RV ×{1, . . . , Ω} of a classification task with Ω classes individually.
Instead we propose to select a random fraction of classes Cl ⊂ {1, . . . , Ω} with
|Cl| = N and use all training examples T l =

⋃
yi∈Cl{hi} of each selected class .

This allows estimating topics which are shared only among a subset of all classes.
Each pLSA model Ml is used to transform BoF histograms hi into topic distri-
butions t(Ml,hi). For training examples in T l, we use the topic distributions
resulting from the pLSA model estimation. All other training examples and each
test example are transformed using the “fold-in” technique defined by (3).

One commonly used technique to combine feature transformation models is
simply averaging outputs [5] of classifiers trained for each feature set individually.
This technique does not allow the classifier to learn dependencies between dif-
ferent models. Therefore we use a concatenation of all calculated feature vectors
t(Ml,hi) as a final feature t(hi):

t(hi)T =
(
t(M1,hi)T , . . . , t(MM ,hi)T

)
. (4)

These final feature vectors are of size M ·Z and can be used to train an arbitrary
classifier. In our experiments, we use an one-vs.-one SVM classifier with a radial
basis function kernel.

We have to estimate M pLSA models with the EM algorithm, thus we need
roughly M times the computation time of a single model fit. To be exact, we use
a fraction of the training data for each model estimation and have to perform the
EM algorithm with the “fold-in” technique for each remaining training example:

timerandomized-plsa =
M∑
l=1

(
|T l|
|T |

timesingle-model +
(
|T | − |T l|

)
timefold-in

)
. (5)

Therefore we pay for the advantage of reduced overfitting with a higher compu-
tational cost.

4 Experiments

We experimentally evaluated our approach to illustrate the benefits of random-
ized ensembles of pLSA models. In the following, we empirically validate the
following hypotheses:
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Mountain Open country Street Tall building

Fig. 2. Example images of each class of the dataset of [11] which we use for evaluation.

1. Randomized pLSA ensembles lead to a performance gain in comparision to
single pLSA and the usual BoF method, which is most prevalent with a large
set of training examples. (Sect. 4.2)

2. With an increasing size M of the ensemble, the recognition rate increases
and levels out after a specific size. (Sect. 4.3)

3. The optimal selection of the parameter N (size of the random subset of
classes) depends on the size of the training set. (Sect. 4.2)

Additionally, in contrast to other researchers [2], we found that the single
pLSA method, in general, does not result in significantly better performance
compared to the standard BoF method. A discussion and detailed results of our
experiments can be found in Sect. 4.2.

4.1 Experimental Setup

The analysis of the benefits and involved parameters of our method is done using
the performance evaluation within a scene recognition scenario. To evaluate our
randomized pLSA technique, we use the image dataset of Oliva and Torralba [11],
which is a publicly available set of images for evaluating scene recognition ap-
proaches [2]. It consists of images from eight different classes which are shown
exemplarily in Fig. 2.

All color images are preprocessed as described in [2]. The performance of
the overall classification system is measured using unbiased average recognition
rates. In contrast to previous work [2], we use Monte Carlo analysis by performing
ten independent training and test runs with a randomly chosen training set.
This provides us with a statistical meaningful estimate and allows to compare
three different approaches: (1) standard BoF without pLSA using normalized
histograms (BoF-SVM), (2) a single pLSA model (pLSA) and (3) an ensemble
with a varying number of pLSA models (r-pLSA). For the BoF approach directly
using BoF histograms h as feature vectors, we applied thresholding using mutual
information (MI) [12] resulting in a performance gain of 5% for this case.
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In all experiments, the number of topics Z is set to 25 and a vocabulary
of 1500 visual words is created using the method described in Sect. 4.1. The
influence of these parameters was analyzed in previous work [2] and the values
showed to be optimal for the dataset of [11].

Feature Extraction As a local feature representation, we use the Oppo-
nentSIFT method proposed in [13]. The task of scene recognition requires the
use of information from all parts of the image. Therefore, local descriptors are
calculated on a regular grid rather than on interest points only.

The method of [12], which utilizes a random forest as a clustering mechanism,
is used to construct the codebook. It trains a random forest classifier using all
local features and corresponding image labels. The leafs of the forest can then
be interpreted as individual clusters or visual words. This codebook generation
procedure showed superior results compared to standard k-means within all
experiments. It also allows us to create large codebooks in a few minutes on
a standard personal computer. Note that due to the ensemble of trees, this
approach results in multiple visual words for a single local feature. This is not
directly modeled by the graphical model underlying pLSA as can be seen in
Fig. 1. Nevertheless we can still apply pLSA on the resulting BoF histograms.

4.2 Results and Evaluation

For a different number of training examples (for each class), Figures 3(a) - 3(c)
show a comparision of our approach using randomized pLSA ensembles with a
standard BoF approach and the utilization of a single pLSA model [2], which is
equivalent to randomized pLSA with N = 8 and M = 1. The classification rates
of our approach are displayed for different values of N . To display the results of
the multiple training and test runs, we use box plots [14].

At first it can be seen that for nearly all settings (except for 10 training
examples and N = 4), our randomized pLSA method reaches a higher recog-
nition rate than the usual BoF approach and the method using a single pLSA
model [2]. These performance benefits are most prevalent with a large number
of training examples. Another surprising fact is that the method proposed by
[2] is not significantly better than the simple BoF method. This might be due
to our use of MI-thresholding for raw BoF histograms. Another reason could be
the analysis using fixed training and test sets in the comparision performed by
[2], which does not lead to significant results. With a glance at the box plots
for different values of N , we can see that it is hard to determine an optimal
parameter value. However a value of N = 5 seems to be a reasonable choice.

Note that the absolute recognition performance of 81−82% for 150 examples
is lower than the best values obtained by [2], which are 87.8% on a test set and
91.1% on a validation set. This is mainly due to different local features and the
incorporation of spatial information, which we do not investigate in this paper.
However, our idea of randomized pLSA ensembles could be well adopted to use
spatial pyramids as proposed in [2].
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(a) 10 training examples per class
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(b) 50 training examples per class
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(c) 150 training examples per class
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Fig. 3. Evaluation using average recognition rate of the whole classification task: (a-c)
Comparision of a usual BoF approach (BoF-SVM), pLSA reduced features and our
approach utilizing a randomized ensemble of multiple pLSA models (r-pLSA) using
training examples from N = 4, 5, 6, 7 random classes. The median of the values is
shown by the central mark, top and bottom of the box are the 0.25 and 0.75 percentiles,
the whiskers extend to the maximum and minimum values disregarding outliers, and
outliers are plotted individually by small crosses [14]. 3(d) classification performance
of r-pLSA with a varying size of the ensemble for a fixed training and test set.

4.3 Influence of the Ensemble Size

As can be seen from Fig. 3(d), increasing the number M of pLSA models yields
a better overall performance. As expected this leads to convergence after a spe-
cific size of the ensemble. A similar effect of the ensemble size can be observed
when using Random Forests [8]. Because of the ability of the SVM classifier to
build maximum margin hypotheses, the effect of overfitting due to an increasing
number of features, and thus to an increasing VC dimension, does not occur.
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5 Conclusion and Further Work

We showed that utilizing a randomization principle, an ensemble of pLSA models
can be build, which offers a feature transformation technique that is not prone to
overfitting compared to a single pLSA model. In a scene recognition scenario, this
technique leads to a better recognition performance in comparision with a single
model or a standard bag-of-features approach. Our experiments also showed that
the recognition performance increases with more pLSA models and levels out. An
interesting possibility for future research would be to study ensembles of models
estimated with Latent Dirichlet Allocation, which is a more sophisticated method
for topic discovery and a well-known Bayesian method [4]. Finally, experiments
should be performed using other datasets with more classes and analyzing the
trade-off between a better recognition rate and a higher computational cost.
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