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Abstract

Machine learning with few training examples al-
ways leads to over-fitting problems, whereas human
individuals are often able to recognize difficult ob-
ject categories from only one single view. It is a
common belief, that this is mostly established by
transferring knowledge from related classes. There-
fore, we introduce anew hybrid classifierfor learn-
ing with very few examples by exploiting interclass
relationships. The approach consists of a random-
ized decision trees structure which is significantly
enhanced using maximum a posteriori (MAP) esti-
mation.

For this reason, a constrained Gaussian is intro-
duced as anew parametric familyof prior distri-
butions for multinomial distributions to represent
shared knowledge of related categories. We show
that the resulting MAP estimation leads to a simple
recursive estimation technique, which is applicable
beyond our hybrid classifier.

Experimental evaluation on two public datasets
(including the very demanding Mammals database)
shows the benefits of our approach compared to the
base randomized trees classifier.

1 Motivation and Introduction

Learning to recognize objects of different categories
is one of the major research fields within com-
puter vision and machine learning. Although cur-
rent state-of-the-art approaches reach impressive re-
sults on difficult datasets [3], they are not able to
handle very small training sets.

Without additional information, machine learn-
ing with few training examples always reduces to
an ill-posed optimization problem. It is a common
paradigm within the community that information of
similar object categories or classification tasks (sup-

port classes / tasks) is the most useful source to
enhance generalization ability of weak representa-
tions [4]. This principle is known in the literature
as learning to learn, knowledge transfer or transfer
learning. Therefore handling few training examples
needs classifiers that use interclass relationships (in-
terclass transfer).

Research in this field is often motivated by clos-
ing the gap between human and machine vision
quality. However, learning with weak representa-
tions is also a typical task demanded by the indus-
try. Gathering training material is often expensive
and time-consuming and can have a significant im-
pact on the overall cost of resulting systems.

Previous work on interclass transfer differs in
the type of information transferred. Miller et al.
[17] try to estimate shared geometric transforma-
tions, which can be applied indirectly to a new class
representation. Another idea is to assume shared
structures in feature space and estimate a metric or
transformation from support classes [7, 19, 1]. This
mostly leads to methods similar to linear discrimi-
nant analysis, without clear motivation and suitable
comparisons to the standard approach.

Torralba et al. [21] use a discriminative boosting
technique which exploits shared class boundaries
within feature space to allow more efficient multi-
class learning with a sub-linear number of features.
In contrast, Fei-Fei et al. [5] develop a generative
framework with MAP estimation of model param-
eters using a prior distribution estimated from sup-
port classes. Contextual information as a helpful in-
formation source in object recognition systems can
be regarded as a special case of interclass transfer
[8, 12, 20].

Our work is motivated by the basic ideas in
[21, 5] and combines them in a new manner. We
propose to use a combined discriminative and gen-
erative technique as a framework of a new transfer
learning approach. The key concept is aMAP esti-
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mation of parameters of a discriminative classifier.
In contrast to other hybrid methods, such as [13],
feature space is efficiently partitioned using a dis-
criminative random forest classifier (or extremely
randomized trees (ERT), [10, 2]) . This partition-
ing and an additional prior on the distribution within
each decision tree is afterwards used as prior knowl-
edge in a MAP estimation of model parameters of a
new class with few training examples (Figure 1).

This allows to develop a classifier, which ef-
ficiently combines the generalization power of
discriminative- and the advantage of generative ap-
proaches to provide a better models of weak repre-
sentations.

The use of ensembles of trees, which is the base
discriminative part of our method, prevents over-
fitting by randomization and thus solves one of the
main problems original decision tree classifiers suf-
fer from. Recent applications [20, 6, 15] show the
great potential and wide applicability of this base
classifier.

We first review randomized decision trees as pre-
sented by [10]. Next we show that Bayesian estima-
tion using a prior distribution is a well founded pos-
sibility to transfer knowledge from related classes
and how to apply this idea to decision trees. In
section 4 a compact model for multinomial distri-
butions, called constrained Gaussian prior, is intro-
duced, which is the theoretical key concept of our
method. Finally, experiments on public available
datasets demonstrate the benefits of our hybrid clas-
sifier. This includes an evaluation using the very
difficult Mammals database of [9]. The use of this
database leads to a short discussion (section 5.3)
about the ability of our method to naturally trans-
fer context. A summary of our findings conclude
the paper.

2 Randomized Decision Trees

The discriminative part of our approach is based
on extremely randomized trees (ERT) as introduced
by Geurts et al [10]. Decision tree classifiers are
(mostly) binary trees which store a weak classifier
and posterior distributionsp(Ωi | n) for each class
i at all nodesn. A weak classifier is a binary func-
tion consisting of an one-dimensional feature and
a simple threshold. At classification phase an ex-
ample (feature vector, image) is traversed down the
tree according to the output of each weak classifier

on the path until a leaf node is reached. The pos-
terior of the leaf node is the result of the decision
tree and estimates the probabilities of an arbitrary
example of classi to reach the leaf.

Standard decision tree approaches suffer from
two serious problems: long training time and over-
fitting. The ERT approach solves both issues by
random sampling. Training time is easily reduced
by an approximate search for the most informative
weak classifier in each node, instead of evaluating
every feature and threshold. The selection is done
by choosing the weak classifier with the highest
gain in information from a random fraction of fea-
tures and thresholds.

Given enough training data for each classi, gen-
eralization performance can be greatly increased by
learning S decision trees (forest) with a random
subset of the training data. Given the leaf nodes of
the forestnL = (nL

1 , . . . , nL
S ) the overall posterior

can be obtained by simple averaging [2]:

p(Ωi | n
L) =

1

S

S
X

s=1

p(Ωi | n
L
s ) . (1)

This special case of Bagging [2] reduces over-
fitting effects without the need of additional tree
pruning. Unbalanced training sets lead to a biased
decision tree classifier, therefore we follow [20]
and weight each example with the inverse class fre-
quency.

3 Transfer Learning using ERT

Learning with few or only one single example of
each class often leads to over-fitting of the model
parameters estimated by the classifier. When using
decision trees, the ability of random forests to ef-
ficiently learn robust classifier combinations cannot
be used due to the fact, that they need to additionally
reduce the training data. Within each tree, a sin-
gle example only increases posterior probabilities
in a single branch, which can be seen as memoriz-
ing the training example completely. For this reason
our approach uses interclass transfer to learn shared
features from support classes and incorporates this
information to boost the generalization ability of a
new class. The main steps of our algorithm are sum-
marized in Figure 2.
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Figure 1: General concept of our approach for transfer learning in the context of learning with few examples:
common knowledge about the recognition task is obtained from training data of related similar classes
(support classes) and used to build a classifier which is ableto efficiently learn from a weak representation
(new class). Images are collected from the Mammals databaseof [9], which is used for experiments in
section 5.

3.1 Discriminative Structure

Despite the well founded, probabilistic background
of Bayesian methods, discriminative classifiers of-
ten lead to a better generalization performance,
which can be seen in the success of support vector
machines as a standard classifier within the machine
learning community.

For this reason we propose to use as a first step
a discriminative random forest trained with exam-
ples of all classes. All subsequent steps to incorpo-
rate knowledge of the new class, use this fixed dis-
criminative structure. This concept has been used in
[11, 15], to reuse features and reduce computation
times. Our approach can be seen as a refinement
step of this fixed discriminative classifier using a
Bayesian framework. In the following, we describe
our method for a single tree in the forest.

3.2 Generative Transfer Learning

As proposed by [5], transfer learning can be done by
MAP estimation of model parametersθ related to
the new classγ. Knowledge from a setS of support

classes is incorporated within this Bayesian frame-
work as a prior distribution of parametersθ. These
classes represent a subset of all available categories,
which are assumed to be related to the new class.
Therefore the fundamental assumption is, that it is
possible to estimate a suitable prior distribution use-
ful to regularize parameter estimation of a related
class. This assumption can be expressed mathemat-
ically by :

θ
MAP = arg max

θ
p(T γ | θ) p(θ | T

S) . (2)

whereT γ denotes training data of the new class
andTS denotes training data of all support classes.
Please note that this directly incorporates the main
assumption by using a prior distribution depending
on the training data of all support classesTS .

With a fixed tree structure, incorporating training
data of the new class reduces to estimating posterior
distributions in the leafs. Using a single training ex-
ample and updating posterior distributions without
additional knowledge induces the update of only a



(I) Learn a randomized decision forest us-
ing all classes [10].

(II) Calculate node probabilities for each
node and each class (equation (3)).

(III) Approximate prior knowledge using
a constrained Gaussian prior (equa-
tion (6)).

(IV) MAP estimation of leaf probabilities
of the class with few training examples
using a CGP (section 4.1).

(V) Calculate node posteriors from esti-
mated leaf probabilities.

(VI) Build additional discriminative layers
(section 3.4).

Figure 2: Main steps of our approach. Steps II to
VI are performed independently for each tree of the
forest.

single branch from the root to the leafs. The dis-
tribution of the new class is restricted to a small
area in feature space defined by the single leaf node
reached by the training sample. It is obvious, that
this leads to an over-fitting situation. Therefore we
propose to use MAP estimation of leaf probabili-
ties in terms of (2), which allows to incorporate
prior knowledge as a well defined distribution. Our
MAP estimation technique, as well as the underly-
ing model distributions, are presented in section 4.

3.3 Leaf probabilities as a parameter

The event of an example reaching noden is de-
fined by the probability mass of a part of the fea-
ture space, described by the path from the root to
n. For this reason, we denote this event byΩn

analogous toΩi representing the part of the feature
space related to classi. If the sum of training ex-
ample weights reaching each nodec(Ωi|Ω

n) (non-
normalized posterior distribution, sum of weights)
is stored, node posterior distributionsp(Ωi|Ω

n) are
easily converted to node probabilitiesp(Ωn|Ωi) us-
ing the following recursive formula (p parent node
of n):

p(Ωn | Ωi) = p(Ωp | Ωi) p(Ωn | Ωp
, Ωi)

= p(Ωp | Ωi)

„

c(Ωi | Ωn)

c(Ωi | Ωp)

«

. (3)

The trivial case is the probability of the root node
r: p(Ωr | Ωi) = 1. Our parameter vectorθ for
MAP estimation consists of the node probability of
each leafl:

θl = p(Ωl | Ωγ) . (4)

Additionally we useθi to denote the vector of
leaf probabilities corresponding to an arbitrary class
i. Due to the fact that leafs of a decision tree induce
a partitioning of the feature space in disjoint subsets
Ωl, each instance of the parameter vector is a dis-
crete multinomial distribution. For this reason any
suitable distribution of discrete distributions can be
used to model a prior and perform MAP estima-
tion. In section 4 we present our model of the prior
as well as the resulting MAP estimation of discrete
distributions. At this point we assume that the leaf
probabilities of the new class are well estimated. In-
ner node probabilities can be calculated additionally
by simple recursive summation within the tree. The
last step is to recompute all posterior distributions,
which can be achieved by the usual application of
Bayes’ law:

p(Ωi | Ωn) =
p(Ωn | Ωi) p(Ωi)

p(Ωn)

=
p(Ωn | Ωi) p(Ωi)

P

i′
p(Ωn | Ωi′) p(Ωi′)

. (5)

3.4 Additional Discriminative Levels

All machine learning approaches using the inter-
class paradigm within a single classification task
have to cope a common issue: Transferring knowl-
edge from support classes can lead to confusion
with the new class. For example using prior infor-
mation from camel images to support a dromedary
within an animal classification task enables to trans-
fer shared features like fur color or head appear-
ance. However, the classifier has to use additional
features like shape information to discriminate be-
tween the two object categories.

To solve this problem we propose to build addi-
tional discriminative levels of the decision tree after



MAP estimation of the leaf posterior distributions.
Starting from a leaf node with non-zero posterior
probability of the new class, we use the method of
[10] to further extend the tree. Training data in this
case consists of all samples of the new class and
samples of all other classes which reached the leaf.
All of the samples are weighted by the correspond-
ing unnormalized posterior distribution. This pro-
cedure allows to find new discriminative features
especially between the new class and all support
classes.

4 Constrained Gaussian Prior

The selection of a suitable parametric model for the
prior distribution is a difficult task. The model pa-
rameter, which is estimated, is a discrete distribu-
tion itself, thus the prior distribution is addition-
ally constrained to a(n − 1)-simplex. A common
choice is a conjugate prior, as a Dirichlet distri-
bution for multinomial distributions. This family
of parametric distributions has typically as many
hyper-parameters as parameters of the underlying
problem. Therefore one needs a huge set of samples
from support classes to estimate optimal Dirichlet
parameters.

For this reason we propose to use a constrained
Gaussian distribution (CGD), which is a much sim-
pler family of parametric distributions. Withθ ≥ 0
we define the density as:

p(θ|TS) ∝ N (θ|µS
, σ

2
I) δ

 

1 −
X

l

θl

!

. (6)

We multiply with theδ-term (δ(0) = 1, ∀x 6=
0 : δ(x) = 0) to ensure, that the support of the den-
sity function is the simplex with all feasible discrete
distributions. The use of aσ2

I as a covariance ma-
trix is an additional assumption which is useful to
derive an efficient MAP estimation algorithm (sec-
tion 4.1).

Figure 3 presents a graphical comparison be-
tween a Dirichlet distribution and our CGD for
some parameter values. Note that our model can
approximate a Dirichlet for the whole variety of pa-
rameters. The main difference is the elliptic shape
of iso-lines in contrast to a more triangular shape,
which is of course more appropriate for the simplex.

This simple model allows to estimate hyper-
parametersµS , σ in an usual way and efficiently

σ2 = 0.1 α = (1.6, 1.6, 1.6)T

σ2 = 0.03 α = (2.2, 6, 6)T

Figure 3: Comparison between a constrained Gaus-
sian (left column) and a Dirichlet distribution (right
column). Color represents the value of the density
at the position on the simplex. Mean of the CGD is
set to the mean of the corresponding Dirichlet dis-
tribution

perform MAP estimation. The mean vectorµS can
be estimated analogous to a non-constrained Gaus-
sian, because of the simplex being a convex set.

Within our application on decision trees,µS is
estimated using leaf probabilities of support classes:

µ
S =

1

|S|

X

i∈S

θ
i
. (7)

As usual, our model of the unknown distribu-
tion by a gaussian parametric family is mostly re-
lated to computational practical issues rather than
theoretical results. Applied to our leaf probabili-
ties with regularization using support classes, this
simple model can of course lead in some cases to
a wrong estimation. For example support classes
could share a common feature which is not related
to the new class. In spite of these possible failure
cases, we will show that due to the high dimension-
ality of θ and careful averaging using bagging our
simple gaussian model is sufficient to increase the
performance of different classification tasks.



4.1 MAP Estimation using a CGP

MAP estimation using complex parametric distribu-
tion often needs nonlinear optimization techniques.
In contrast to these approaches we show that by us-
ing our constrained Gaussian as a prior of a multi-
nomial distribution, it is possible to derive a closed-
form solution of the global optimum depending on
a single Lagrange multiplier.

We start by writing the objective function of the
MAP estimation as a Lagrange function of our sim-
plex constraint and the posterior:

L(θ, λ) = log
“

p(T γ|θ) p(θ|TS)
”

+ λ

 

X

l

θl − 1

!

. (8)

The likelihood has the simple form of a multi-
nomial and depends on a discrete histogramc =
(cl)

m

l=1
representing the number of samples of each

component:

p(T γ|θ) ∝
Y

l

(θl)
cl . (9)

Within our application to leaf probabilities of
decision trees, the absolute number of examples
reaching a node is used:cl = c(Ωγ |Ω

l). Hence,
the overall objective function can be written as:

X

l

„

cl log(θl) −
1

2σ2
(θl − µl)

2 + λθl

«

− λ .

The normalization factor of our prior and the
likelihood can be neglected, because they are sin-
gle independent additive constants inL. Setting the

gradient
“

∂L
∂θl

”

(θ, λ) to zero leads tom indepen-

dent equations:

0 =
cl

θl

−
1

2σ2
· 2 · (θl − µl) + λ . (10)

Note that we get a non-informative prior which
reduces MAP to ML estimation withσ2 → ∞. It
is easy to proof, that under “non-degenerate condi-

tions” all entries of the optimal vectorθMAP are
positive. Therefore we can assumeθl > 0 for each
l and it is possible to obtain a simple quadratic equa-
tion in θl:

0 = θ
2
l + θl (−µl − λσ

2) − σ
2
cl . (11)

Therefore the optimization problem only has a
single positive solution depending onλ:

θl =
µl + λσ2

2
+

s

„

µl + λσ2

2

«2

+ σ2cl . (12)

Estimating the Lagrange multiplier is done with
a simple fixed point iteration, derived from our sim-
plex constraint:

1
!
=
X

l

θl

=
X

l

µl + λσ2

2
+
X

l

p

gl(λ)

=
1

2
+

1

2
mλσ

2 +
X

l

p

gl(λ) (13)

where

gl(λ) =

„

µl + λσ2

2

«2

+ σ
2
cl (14)

is an abbreviation of the term under the square
root. This finally leads to the following recursion
formula:

λ
i+1 =

1 − 2
P

l

p

gl(λi)

mσ2
. (15)

So far, we cannot prove convergence theoreti-
cally, but in our application we find a suitable so-
lution within a few iterations. Better techniques to
solve equation (13) beyond a simple fixed point it-
eration may lead to better numerical stability but
are not investigated. Given the Lagrange multiplier
λ we can easily estimate the whole vectorθ using
equation (12).

5 Experiments

To show its applicability, we experimentally eval-
uated our approach. For a comparative analysis
the use of publicly available datasets is an impor-
tant aspect. On that account the database of hand-
written Latin letters [7] and the demanding Mam-
mals database [9] are used. The diversity of the two
databases allows to assess the general performance



gain of our method independent of the classification
task.

Evaluation criterions are unbiased average recog-
nition rates of the whole classification task and sin-
gle recognition rates of the new class. We perform
Monte Carlo analysis by selecting randomlyf train-
ing examples of the new class, which leaves the rest
for testing. To estimate recognition rates for a fixed
value off we average the results of multiple runs.
This also averages the influence of the highly ran-
domized manner of our base classifier.

Our experimental evaluation aims at analyzing
the gain of our transfer learning approach compared
to a standard ERT classifier. We do not focus on the
development of new feature types which are suit-
able for a special recognition task. For this reason
our choice of features is quite standard and not op-
timized (section 5.1 and 5.2).

The varianceσ2 of the CGP is an important pa-
rameter of our method. It controls the influence
of the prior and therefore indirectly our assumption
about how much the new class is related to support
classes. An optimal value forσ2 could be obtained
by cross validation, but we fixed the value to10−5

in all experiments.
Another issue is the selection of support classes

from all available classes. Our main assumption in
equation (2), suggests that those categories have to
share common features, shape, appearance or con-
text (section 5.3). Automatically estimating class
similarity would be optimal to provide support class
subsets. However this leads to a vicious circle,
because one has to estimate models in advance.
Therefore we select support classes manually.

We build an ensemble of10 decision trees with-
out limits on depth or example counts within each
node. During training we test a maximum of 500
random features with 15 thresholds drawn from a
uniform distribution at each node.

5.1 Latin Letters

The database of [7] is a collection of images con-
taining handwritten Latin letters resulting in 26 ob-
ject categories. For each object class 59-60 images
are provided.

Features Images of this database are binary, so
a very simple feature extraction method is used.
We divide the whole image into an equally spaced

amur tiger red panda alpaca
hippopotamus baboon tapir

sea lion black lemur hyena
asian elephant caracal opossum
beluga whale siberian tiger ocelot

hartebeest cape buffalo moose
african elephant ferret llama
howler monkey bighorn sheep marmot

bengal tiger african lion lemur
white rhinoceros

Table 1: Categories used for experiments with the
Mammals database[9]: bold font = class with very
few training examples, italic font = support classes

wx × wy grid. In each cell of the grid, the ratio
of black pixels and all pixels within the cell is used
as a single feature. This leads to a feature vector
with wxwy dimensions. In all experiments we used
values ofwx = 8 andwy = 12.

5.2 Mammals Database

The Mammals database of Fink and Ullmann [9]
consists of over 45000 images categorized into 409
animal types. Categorization of this database is very
difficult, because of large intraclass variability, in-
cluded art drawings and mixed head and body im-
ages. In all our experiments we used a subset of all
object categories in the database (Table 1).

The database was specially collected to push
progress in the area of object recognition using the
interclass transfer paradigm. Many object cate-
gories share common features due to evolutionary
relationships. We selected support categories with
rather generic properties shared with the new class
“sea lion”. Therefore our results may provide a
lower bound on performance gain, that is achieved
with very similar support classes. It is important to
note, that we did not manually align and flip images
or use bounding box information.

Features Due to large intraclass variations global
features are not suitable for this classification task.
Therefore we build upon the work of [16]. Standard
SIFT descriptorsdI

k are evaluated at several ran-
dom locations within the imageI (e.g. g = 1000
positions). All descriptors are used to train the clas-
sifier. Classification of an imageI is done by sim-
ple averaging all descriptor posteriori probabilities:



 78.5

 79

 79.5

 80

 80.5

 81

 81.5

 82

 82.5

 0  2  4  6  8  10  12  14

av
g.

 r
ec

og
ni

tio
n 

ra
te

 o
f a

ll 
cl

as
se

s

number of training examples used for class "e"

Our Approach
Standard ERT

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  2  4  6  8  10  12  14

av
g.

 r
ec

og
ni

tio
n 

ra
te

 o
f "

e"

number of training examples used for class "e"

Our Approach
Standard ERT

Figure 4: Results for the Latin Letters Database of Fink et al. [7]: recognition rates of our classifier and the
standard approach applied to handwritten Latin letters with few training examples for the letter “e” (support
classes: “a,c,d,b”, 30 training examples used for all otherclasses). Note that due to the high randomization,
error bars display0.25σ ranges.

p(Ωi | I) =
1

g

g
X

k=1

p(Ωi | d
I
k ) . (16)

Features are based on gray-values and no incor-
poration of color information is done. We also
tested a codebook approach [18] with codebook size
1000 obtained by online k-Means. This method
only reached about17% average recognition rate
compared to22% achieved by the method of [16].

5.3 Transferring context information

The success of orderless Bag-of-Features ap-
proaches (BoF) as a standard method for object
classification can be traced back to two aspects:
First of all geometric models are difficult to learn
and current methods are not yet robust enough to
handle large intraclass variation. Thus, order-less
methods provide more robust classifiers. Another
advantage of BoF methods, which seems to be the
most important one, is the indirect use of context in-
formation. Background and foreground features are
used equally in all steps of the training and classi-
fication process. For this reason, a huge amount of
background features influences a BoF method.

Our method naturally transfers common features,
which can be object-specific or contextual, to a new
class. For example it could transfer the knowledge
of typical desert-like background from a camel class
to a dromedary class.

5.4 Evaluation

Results of the comparison between our approach
and the standard ERT classifier [10] are presented
in Figure 4 and 5. Both average recognition rates of
the whole classification task and recognition rates
of the new class are plotted as a function of training
examples. Our combined generative/discriminative
transfer learning approach outperforms the standard
ERT classifier whenusing very few training ex-
amples. This shows, that improving recognition of
the new class does not reduce the classification per-
formance of other classes on average.

By training with a single example of the Latin
letter “e”, a recognition rate of35.71% was reached
on average, compared to11.93% by the standard
ERT classifier. Using two training examples the gap
even increases from60% of our approach to31% of
the standard one.

An important aspect of our method can be seen
in both of the experiments. After a certain number
of training images used for the new class MAP esti-
mation does not improve average recognition rates
of the whole classification task but increases classi-
fication accuracy of the new class. Thus, the perfor-
mance on other classes decreases due to confusion
with the new class. This can be traced back to the
fact, that the prior has to much weight in spite of a
very informative likelihood.
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Figure 5: Results for the very difficult Mammals Database [9]with 28 categories: recognition rates of our
classifier and the standard approach applied to images of mammals with few training examples for the class
“sea lion” (support classes: african lion, beluga whale, hyena, hippopotamus, 50 training examples used for
all other classes). Note that due to the high randomization,error bars display0.25σ ranges.

6 Conclusion

We argue that learning with few examples can be
solved by incorporating prior knowledge of related
classes (interclass transfer paradigm). For this rea-
son, a combined discriminative/generative classifier
was presented that uses interclass relationships to
support object classes with few training examples.

As a first step, a discriminative randomized de-
cision tree classifier is learned from all classes.
The key concept of our approach is a subsequent
MAP estimation of leaf probabilities within each
tree for one class with weak training representation.
Bayesian formulation allows to infer knowledge
from related classes as prior distribution, which
needs a suitable parametric model. Therefore we
introduced a new family of prior distributions for a
multinomial distribution, which is a Gaussian con-
strained to a simplex. Resulting MAP estimation
leads to easily solvable equations without the need
of complex nonlinear optimization techniques.

Experiments performed on two public available
datasets (Latin letters of [7], Mammals database
[9]) show how our method applied to a classifica-
tion task significantly boosts the recognition rate
of one class with very few examples. In case of
the Latin letters database we were able to improve
recognition using a single training example of the
class “e” about23%. Experimental evaluation us-
ing the Mammals database show that our method is
able to reach a gain of up to19% using two training
examples within a very difficult classification task.

7 Further Work

Our compact model of a prior for multinomial dis-
tributions can be applied beyond our hybrid classi-
fier. Thus, we are interested in which situations a
CGP is more efficient and suitable than a common
Dirichlet distribution.

One issue of our algorithm is of course a man-
ually selected variance of the prior, which controls
the influence of related classes. Therefore another
question of interest is whether it is possible to es-
timateσ automatically with all information about
the classification task one can extract from training
images.
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