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Abstract

We present a new algorithm for training linear support vector machine classi-
fiers across image domains. To compensate for statistical differences between
domains, our algorithm learns a linear transformation that maps points from the
target (test) domain to the source (training) domain as part of training the clas-
sifier. We optimize both the transformation and classifier parameters jointly, and
introduce a novel cost function for transformation learning based on the misclassi-
fication loss of the target points transformed into the source domain. Our method
has advantages over previous SVM-based domain adaptation algorithms because
it performs multi-task adaptation, learning a shared component of the domain shift
across all categories. Additionally, our method has an advantage over the previous
max-margin techniques because it can be solved in linear feature space, making it
scalable to large training datasets. We present experiments on both synthetic data
and real image datasets that demonstrate strong performance and computational
advantages compared to previous approaches.

1 Introduction

We address the problem of adapting image classifiers to novel domains. Recent studies have demon-
strated a significant degradation in the performance of state-of-the-art image classifiers due to test
domain shifts such as changing image sensors and noise conditions [1], pose changes [2], consumer
vs. commercial video [3, 4], and, more generally, training datasets biased by the way in which
they were collected [5]. Adaptation of support vector machines is a particularly interesting problem
due to their prevalence, with fast linear SVMs forming the core of some of the most popular object
detection methods [6, 7].

Several recent SVM adaptation methods have been proposed for vision applications [3, 4, 8, 9, 10,
11]. In particular, adaptive linear SVMs [9, 10, 11] learn a perturbation of the source hyperplane
by minimizing the classification error on target labeled examples for each binary task. Figure 1(a)
illustrates the adaptation of the source hyperplane parameter θ for a binary cup classifier using a
small number of labeled target images (green border indicates a positive label, red negative) to
obtain the target parameter θt.
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Figure 1: Supervised max-margin adaptation techniques such as PMT-SVM [11] cannot generalize
the learned domain shift to novel tasks/categories: (a) these methods learn a separate adapted param-
eter θt for each task by minimizing its distance from the source parameter θ learned on the source
domain (images without borders) while minimizing the misclassification of labeled images from the
target domain (green border is positive, red is negative); (b) given a novel task with no labels in
the target, these methods cannot predict the adapted parameter θt for that task; (c) in contrast, our
method learns a single parameter transform W for all tasks/categories and is thus able to obtain
adapted parameters θt =WT θ for all tasks.

In many vision applications, such as object, face or activity recognition, the number of categories
is high and only a few categories have a small number of labels in the target domain. This poses
a problem for SVM-based methods, as they are unable to either share the training labels across
categories or adapt categories unlabeled in the target, as illustrated in Figure 1(b): without labeled
target points for phone, adaptation cannot be performed.

Recently proposed transform-based adaptation methods [1, 2, 12, 13, 14] overcome this problem
by learning a feature transform that maps target features into the source, pooling all training labels
across categories. This enables them to perform multi-task adaptation, and to transfer the task-
independent component of the domain shift (the feature transform) to unlabeled categories. For
example, a map learned on the labeled cup category can be used to map the unlabeled phone category
to the source domain and then apply a source phone classifier. An additional advantage of the
asymmetric transform method ARC-t [12] is that it can learn maps between heterogeneous domains.

While attractive, the approach in [12] has two major flaws: First, unlike the SVM parameter adap-
tation methods above, transformation learning does not optimize the objective function of a strong,
discriminative classifier directly; rather, it maximizes some notion of closeness between the trans-
formed target points and points in the source. The second disadvantage is its increased computa-
tional complexity due to the high number of constraints, which is proportional to the product of the
number of labeled data points in the source and target. This prevents the method from being applied
to source domains with large numbers of points.

A recent approach proposed in [?] learns a transformation both from source and from target into
a latent common space. It seeks to learn the projections while optimizing the classification objec-
tive. Since this method requires learning both transforms for an augmented feature space it makes
the problem difficult to optimize directly in linear feature space. Therefore, the authors proposed
optimizing a kernelized version of their algorithm. However, this solution has limitations as data
sources grow.

In this paper, we present a novel technique that combines the strengths of both transform-based and
parameter-based methods, which we call Max-Margin Domain Transforms, or MMDT for short. As
shown in Figure 1(c), MMDT uses a transform W to map source model parameters to the target
θt = WT θ, learning the transform jointly on all categories for which target labels are available.
MMDT provides a way to adapt max-margin classifiers in a multi-task manner, by learning a shared
component of the domain shift as captured by the transformation W . Additionally, MMDT can be
optimized quickly in linear space, making it a feasible solution for problem settings with a large
amount of training data.
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The key idea behind our approach is to simultaneously learn both the projection of the source param-
eters into the target domain and the classifier parameters themselves, using the same classification
loss to jointly optimize both W and θ. Thus our method combines the strengths of max-margin
learning with the flexibility of the feature transform: because it operates over the input features, it
can generalize the learned shift in a way that parameter-based methods cannot. On the other hand,
it overcomes the two flaws of the ARC-t method: by optimizing the classification loss directly in
the transform learning framework, it can achieve higher accuracy; furthermore, replacing similarity
constraints with more efficient hyperplane constraints significantly reduces the training time of the
algorithm and learning a transformation directly from target to source allows optimization in linear
space.

The main contributions of our paper can be summarized as follows:

• MMDT can be optimized faster than competing methods because it has fewer constraints
to satisfy (than [12]) and because it can be optimized in linear feature space, unlike [?].

• Experiments show that MMDT in linear feature space outperforms competing methods in
terms of multi-class accuracy even compared to previous kernelized methods.

• MMDT learns an asymmetric category independent transformation. Therefore, it can learn
adaptation even when the target domain does not have any labeled examples for some
categories and when the target and source features are not equivalent.

• Our final iterative solution can be solved using standard QP packages, making MMDT easy
to implement.

2 Related Work

Domain adaptation, or covariate shift, is a fundamental problem in machine learning, and has at-
tracted a lot of attention in the machine learning and natural language community, e.g. [15, 16, 17,
18] (see [19] for a comprehensive overview.) It is related to multi-task learning but differs from it
in the following way: in domain adaptation problems, the distribution over the features p(X) varies
across domains while the output labels Y remain the same; in multi-task learning or knowledge
transfer, p(X) stays the same (single domain) while the output labels vary (see [19] for more de-
tails.) In this paper, we perform multi-task learning across domains, i.e. both p(X) and the output
labels can Y change between domains.

Domain adaptation has been gaining considerable attention in the vision community. Several SVM-
based approaches have been proposed for image domain adaptation, including: weighted combi-
nation of source and target SVMs and transductive SVMs applied to adaptation in [8]; the feature
replication method of [16]; Adaptive SVM [9, 10], where the source model parameters are adapted
by adding a perturbation function, and its successor PMT-SVM [11]; Domain Transfer SVM [3],
which learns a target decision function while reducing the mismatch in the domain distributions;
and a related method [4] based on multiple kernel learning. In the linear case, feature replica-
tion [16] can be shown to decompose the learned parameter into θ = θ̂ + θ′, where θ̂ is shared by
all domains [20], in a similar fashion to adaptive SVMs.

Several transform-based adaptation methods [1, 12, 13, 2, 14, ?] have also recently been proposed
for (semi-)supervised visual domain adaptation. These methods attempt to learn a perturbation over
the feature space rather than a class-specific perturbation over the model parameters, typically in the
form of a transformation matrix.

The ARC-t method [12] learns a transformation matrix W that maximizes similarity constraints
between points in the source and those projected from the target domain using W . The mapped
points are then used in a separate classifier. ARC-t has demonstrated the ability to perform multi-task
adaptation and handle heterogeneous features; however, it has approximately quadratic dependence
on the number of training points and does not optimize classification accuracy directly.

The recent HFA method [?] learns a transformation both from the source and target into a common
latent space where classification can occur. However, this method is limited because it requires
learning a transformation for augmented feature spaces which makes it difficult to solve the opti-
mization problem in linear feature space. Therefore, the authors present and implement a kernelized
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version of their algorithm. This solution, in turn becoming limiting as the number of training points
grows.

In this paper, we incorporate the transformation learning directly into the classification objective and
learn it by optimizing the accuracy on the training data. We are able to run our algorithm in linear
space and so have the potential to scale up to a large number of training examples.

3 Max-Margin Domain Transforms

We propose a novel method for multi-task domain adaptation of linear SVMs. Denote the normal
to the affine hyperplane associated with the k’th binary SVM as θk, k = 1, ...,K, and the offset of
that hyperplane from the origin as bk. Intuitively, we would like to learn a joint perturbation over
θk that is shared across multiple categories. We propose to do so by learning a transformation W
of the input features, or, equivalently, a transformation WT of the source hyperplane parameters
θk. Let xs1, . . . , x

s
nS

denote the training points in the source domain (DS), with labels ys1, . . . , y
s
nS

.
Let xt1, . . . , x

t
nT

denote the labeled points in the target domain (DT ), with labels yt1, . . . , y
t
nT

. Thus
our goal is to jointly learn 1) affine hyperplanes that separate the classes in the common domain
consisting of the source domain and target points projected to the source and 2) the transformation
from the points in the target domain into the source domain. The transformation should have the
property that it projects the target points onto the correct side of each source hyperplane.

For simplicity of presentation, we first show the optimization problem for a binary problem (drop-
ping k) with no slack variables. Our objective is as follows:

min
W,θ,b

1

2
||W ||2F +

1

2
||θ||22 (1)

s.t. ysi

([
xsi
1

]T [
θ
b

])
≥ 1 ∀i ∈ DS (2)

yti

([
xti
1

]T
WT

[
θ
b

])
≥ 1 ∀i ∈ DT (3)

Note that this can be easily extended to the multi-class case by simply adding a sum over the regu-
larizers on all θk parameters and pooling the constraints for all categories.

The objective function, written as in Equations (1)-(3), is not a convex problem and so is both hard
to optimize and is not guaranteed to have a global solution. Therefore, a standard way to solve this
problem is to do alternating minimization on the parameters, in our case W and (θ, b). We can
effectively do this because when each parameter vector is fixed, the resulting optimization problem
is convex.

We begin by re-writing Equations (1)-(3) for the more general problem with soft constraints (slack)
and K categories. Let us denote the hinge loss as: L(y, x, θ) = max{0, 1 − δ(y, k) · xT θ}. We
define a cost function

J(W, θk, bk) =
1

2
||W ||2F +

K∑
k=1

[
1

2
||θk||22 (4)

+CS

nS∑
i=1

L
(
ysi ,

[
xsi
1

]
,

[
θk
bk

])

+CT

nT∑
i=1

L
(
yti ,W ·

[
xti
1

]
,

[
θk
bk

])]
where the constant CS penalizes the source classification error and CT penalizes the target adapta-

tion error. Finally, we define our objective function with soft constraints as follows:

min
W,θk,bk

J(W, θk, bk) (5)

To solve the above optimization problem we perform coordinate descent on W and (θ, b). Our
algorithm takes the following form:
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1. Set iteration j = 0, W (j) = 0.

2. Solve the sub-problem (θ
(j+1)
k , b

(j+1)
k ) = argminθk,bk J(W

(j), θk, bk) by solving:

min
θ,b

K∑
k=1

[
1

2
||θk||22 (6)

+CS

nS∑
i=1

L
(
ysi ,

[
xsi
1

]
,

[
θk;
bk

])

+CT

nT∑
i=1

L
(
yti ,W

(j) ·
[
xti
1

]
,

[
θk
bk

])]
Notice, this corresponds to the standard SVM objective function, except that the target
points are first projected into the source using W (j). Therefore, we can solve this interme-
diate problem using a standard SVM solver package.

3. Solve the subproblem W (j+1) = argminW J(W, θ(j+1), b(j+1)) by solving

min
W

1

2
||W ||2F + (7)

CT

K∑
k=1

nT∑
i=1

L

(
yti ,W ·

[
xti
1

]
,

[
θ
(j+1)
k

b
(j+1)
k

])
and increment j. This optimization sub-problem is convex and is in a form that a standard
QP optimization package can solve.

4. Iterate steps 2 & 3 until convergence.

It is straightforward to show that both stages (2) and (3) cannot increase the global cost function
J(W, θ, b). Therefore, this algorithm is guaranteed to converge to a local optimum. A proof is
included in the supplemental material.

It is important to note that since both steps of our iterative algorithm can be solved using standard
QP solvers, the algorithm can be easily implemented. Additionally, since the constraints in our
algorithm grow linearly with the number of training points and it can be solved in linear feature
space, the optimization can be solved efficiently even as the number of training points grows.

We now analyze the proposed algorithm in the context of the previous feature transform methods
ARC-t [12] and HFA [?]. ARC-t introduced similarity-based constraints to learn a mapping similar
to that in step 3 in our algorithm. This approach creates a constraint for each labeled point xsi in the
source and labeled point xti in the target, and then learns a transformationW that satisfies constraints
of the form (xsi )

TWxti > u if the labels of xsi and xti are the same, and (xsi )
TWxti < l if the labels

are different, for some constants u, l.

The ARC-t formulation has two distinct limitations that our method overcomes. First, it must solve
nS ·nT constraints, whereas our formulation only needs to solveK ·nT constraints, for aK category
problem. In general, our method scales to much larger source domains than with ARC-t. The second
benefit of our max-margin transformation learning approach is that the transformation learned using
the max-margin constraints is learned jointly with the classifier, and explicitly seeks to optimize the
final SVM classifier objective. While ARC-t’s similarity-based constraints seek to map points of the
same category arbitrarily close to one another we seek simply to project the target points onto the
correct side of the learned hyperplane, leading to better classification performance.

The HFA formulation also takes advantage of the max-margin framework to directly optimize the
classification objective while learning transformations. HFA learns the classifier and transforma-
tions to a common latent space between the source and target. However, due to the difficulty of
defining the dimension of the latent space directly, they optimize with respect to a larger combined
transformation matrix and a relaxed constraint. Additionally, this transformation matrix becomes
too large when the feature dimensions in source and target are large so the HFA must usually be
solved in kernel space. This can make the method slow and cause it to scale poorly with the number
of training examples. In contrast, our method can be efficiently solved in linear feature space which
makes it fast and potentially more scalable.
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Figure 2: Multiclass accuracy evaluation on the Office dataset for the standard supervised domain
adaptation setting where there is a small amount of training data available in target for every object
category. Our method, MMDT, outperforms the no-adaptation, max-margin based, and transform
based baselines.

4 Experiments on Image Datasets

We now present experiments using the Office [1] and Bing [8] datasets to evaluate our algorithm
according to the following four criteria: 1) Multi-class accuracy in the standard supervised domain
adaptation setting; 2) Multi-class accuracy for the supervised domain adaptation setting where the
source and target have different feature dimensions. 3) Multi-class accuracy in the multi-task domain
adaptation setting with novel target categories at test time; 4) Training time performance compared
to the transform based ARC-t method [12].

4.1 Office Dataset
The Office dataset is a collection of images that provides three distinct domains: amazon, webcam,
and dslr. The dataset has 31 categories consisting of common office objects such as chairs, back-
packs and keyboards. The amazon domain contains product images (from amazon.com) containing
a single object, centered, and usually on a white background. The webcam and dslr domains con-
tain images taken in“the wild” using a webcam or a dslr camera, respectively. They are taken in
an office setting and so have different lighting variation and background changes (see Figure1 for
some examples.) Note that webcam and dslr contain images of the same object instances. In our
experiments we follow previous protocols and evaluate on the object category recognition problem,
so in the case of the webcam → dslr shift, or vice versa, we make sure different instances are
used for training and testing. We use the SURF-BoW image features provided by the authors. More
details on how these features were computed can be found in [1].

For our first experiment we use this domain adaptation benchmark dataset for the case when a few
labeled examples are available for all categories in the target domain. This allows us to compare
MMDT to the existing state-of-the-art max-margin and transform based domain adaptation meth-
ods.We follow the setup of [1]: all methods are given a training set of 20 labeled examples per
category in the source domain, and 3 labeled examples per category in the target domain. In each
trial run, a random subset of the eligible data is selected for training. Because each category of the
office dataset may contain multiple images of the same object across domains (taken from different
viewpoints, for example), only images with object IDs 1, 2, and 3 are eligible for training and only
images with object IDs 4 and 5 are eligible for testing classification accuracy, ensuring that our re-
sults reflect category recognition rather than instance recognition. We use the following baselines as
a comparison in the different experiments where applicable.

• knnS : k-Nearest Neighbors using only the labeled examples in the source domain.

• knnS∪T : k-Nearest Neighbors using both the source labeled and the target labeled exam-
ples.

• svmS : A support vector machine using only source training data.

• asvm: A category specific parameter adaptation technique that minimizes the distance (`2)
from the target and source parameter vectors. We train an 1-vs-all A-SVM classifier [10, 9].
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svms svmt arct [?] hfa [?] gfk[?] mmdt (ours)
a→ w 33.9 ± 3.1 62.4 ± 4.0 41.3 ± 3.5 57.5 ± 4.8 58.6 ± 4.4 64.6 ± 5.2
a→ d 35.0 ± 3.5 55.9 ± 3.4 38.2 ± 3.2 52.7 ± 4.2 50.7 ± 3.6 56.7 ± 5.6
w→ a 35.7 ± 2.0 45.6 ± 3.0 39.6 ± 1.7 40.2 ± 3.0 44.1 ± 1.7 47.7 ± 4.1
w→ d 66.6 ± 3.3 55.1 ± 3.6 69.6 ± 4.5 52.4 ± 5.3 70.5 ± 3.3 67.0 ± 4.9
d→ a 34.0 ± 1.3 45.7 ± 3.9 38.5 ± 2.0 40.1 ± 4.6 45.7 ± 2.8 46.9 ± 4.6
d→ w 74.3 ± 2.4 62.1 ± 3.4 76.3 ± 2.5 58.1 ± 4.1 76.5 ± 2.3 74.1 ± 3.8
a→ c 35.1 ± 1.2 32.0 ± 3.4 32.7 ± 1.2 29.8 ± 3.2 36.0 ± 2.2 36.4 ± 3.4
w→ c 31.3 ± 1.6 30.4 ± 3.2 31.3 ± 2.2 27.0 ± 3.6 31.1 ± 2.8 32.2 ± 3.7
d→ c 31.4 ± 1.3 31.7 ± 2.6 32.1 ± 1.3 29.0 ± 2.4 32.9 ± 2.2 34.1 ± 3.5
c→ a 35.9 ± 1.8 45.3 ± 4.0 39.2 ± 2.0 39.4 ± 4.1 44.7 ± 3.5 49.4 ± 3.8
c→ w 30.8 ± 5.0 60.3 ± 4.5 43.1 ± 5.2 55.9 ± 5.1 63.7 ± 3.6 63.8 ± 4.8
c→ d 35.6 ± 3.3 55.8 ± 4.0 42.2 ± 3.5 52.5 ± 5.1 57.7 ± 4.8 56.5 ± 3.9
mean 40.0 ± 2.5 48.5 ± 3.6 43.7 ± 2.7 44.6 ± 4.1 51.0 ± 3.1 52.5 ± 4.3

Table 1: 10 Category case: All results are from our implementation. In the case of gfk, the previously
published results vary slightly from our implementation. However, when averaged across all domain
shifts the reported average value for the method was 51.65 while our implementation had an average
of 51.0 ± 3.1. Therefore, the result difference is well within the standard deviation over data splits.
Red indicates the best result for each domain split. Blue indicates the group of results that are close
to the best performing result.

Table 2: Multiclass accuracy results on the standard supervised domain adaptation task with different
feature dimensions in the source and target. The target domain is dslr for both cases.

source arc-t (knn) arc-t (svm) hfa mmdt
amazon 47.9 ± 2.4 51.7 ± 2.1 43.1 ± 2.7 52.9 ± 2.8
webcam 49.1 ± 2.1 50.4 ± 2.9 46.7 ± 4.0 55.7 ± 1.9

• pmt-svm: A category specific parameter adaptation technique that minimizes the angular
distance between the target and source parameter vectors. We train an 1-vs-all PMT-SVM
classifier [11].

• arc-t: A category general feature transform method proposed by [12]. We implement the
transform learning and then apply both a KNN classifier (as originally proposed) and an
SVM classifier.

Figure 2 shows the multiclass accuracy (%) over the test data from the target domain from each of
the six possible domain shifts. On the x-axis each result cluster represents a distinct domain shift
where the source and target domains are formatted as: [source]-[target].

Our method outperforms all other methods for each domain shift in this setting. The most benefit is
offered for the shift of webcam→ dslr and dslr→webcam. This aligns with our intuition that
if the nature of the domain shift is consistent across all object categories (in this case, the camera
sensor), then learning a joint transformation by pooling all classes will perform better than learn-
ing per-class offsets (asvm and pmt-svm). Additionally, in general MMDT provides a significant
improvement over the other global transformation method, arc-t, which uses similarity based con-
straints for learning a transformation, rather than optimizing the classification error directly.

Next, we analyze the effectiveness of our asymmetric transform learning by experimenting with
the source and target having different feature dimensions. We use the same experimental setup as
previously, but let the source domains (amazon or webcam) be represented with SURF features
quantized into an 800-dimensional histogram feature. The target (dslr), however, is quantized into
a 600-dimensional histogram feature.

For this asymmetric transfer setting, we can not directly compare against knnS , knnS∪T , svmS ,
asvm, and pmt-svm. We instead add an additional baseline of hfa [?], which is a max-margin
transform approach that seeks to learn a latent common space between source and target as well as
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Figure 3: Left: multiclass accuracy on the Bing dataset using 50 training examples in the source and
varying the number of available labeled examples in the target. Right: training time comparison.

Table 3: Multiclass accuracy results on the Office dataset for the domain shift of webcam→dslr
for target test categories not seen in at training time. Following the experimental setup of [12]. We
compare against pmt-svm [11] and ARC-t [12] using both knn and svm classification.

No Adaptation Baselines Adaptation Baselines Ours
knns knns∪t svms pmt-svm arc-t (knn) arc-t(svm) mmdt
34.8 12.0 ± 0.6 48.1 ± 0.3 48.1 ± 0.3 44.5 ± 0.4 35.8 ± 0.8 55.0 ± 1.3

a classifier that can be applied to points in that common space. Table 2 shows multi-class accuracy
results for this setting.1.

An important observation is that our linear method outperforms hfa and arc-t even though they both
learn a non-linear transformation using a Gaussian RBF kernel (σ = 1).

4.2 Bing Dataset

In the previous experiment we showed that our max-margin transform method produces higher mul-
ticlass accuracy then the baseline for the standard domain adaptation task where a small amount of
labeled target data is available for every category.

With the next experiment we show that while our method gains accuracy performance it is also con-
siderably faster than the baseline transform learning method, ARC-t [12]. As described in Section
3, the number of constraints for our optimization problem scales linearly with the number of labeled
target points, nT , and does not depend on the number of source labeled points. Conversely, the
number of constraints that need to be optimized for the ARC-t baseline is equal to the product of the
number of labeled points in the source and the target, nS · nT .

To demonstrate the effect that constraint set size has on run-time performance, we use the Bing
dataset from [8], which has a larger number of images in each domain than Office. The source
domain has images from the Bing search engine and the target domain is from the Caltech256
benchmark. We run experiments using the first 20 categories and set the number of source examples
per category to be 50. We use the train/test split from [8] and then vary the number of labeled target
examples available from 5 to 25. The left-hand plot in Figure 3 presents multiclass accuracy for
this setup. Our MMDT method provides a considerable improvement over the ARC-t method in
terms of multiclass accuracy, and beats PMT-SVM for smaller numbers of target examples, again
confirming the benefit of multi-task learning. Additionally, the training time of our method (run to
convergence) and that of ARC-t (just transform-learning) is shown empirically on the right-hand plot
in Figure 3. MMDT takes on average 3.8 seconds to learn a feature transformation in step(1) (3.1
minutes to run to convergence) while ARC-t takes up to 200 minutes for the largest experiment.2
Consider the scenario with 50 examples per category in the source (nS = 50 ∗K) and 20 training
examples per category in the target (nT = 20 ∗ K). For 20 categories, MMDT needs to optimize
K · nT = (20)(20 ∗ 20) = 8000 constraints. Conversely, the ARC-t baseline method needs to

1Note that for this experiment we used both the code and the parameter settings reported by [?] for the hfa
method, but our result had a lower accuracy than reported in [?]

2We used the LIBSVM package [?]; faster linear SVM solvers could further speed up our method.
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optimize nS · nT = (20 ∗ 50) ∗ (20 ∗ 20) = 400, 000 constraints. Therefore, this experiment
demonstrates that when the number of source data points is large, the ARC-t method does not scale
well, while our MMDT method is able to learn a transformation on a large source dataset very
quickly.

4.3 Generalizing to Novel Categories
Finally, we consider the setting of practical importance where labeled target examples are not avail-
able for all objects. Recall that this is a setting that many category specific adaptation methods
cannot generalize to. Therefore, we compare our results for this setting to the ARC-t [12] method
which learns a category independent feature transform. The ARC-t method is presented as a tech-
nique for learning a transform to project target features into the source that can then be classified
using a source classifier. Therefore, we experimented with learning the transform according to [12]
and then classified the projected target features using a k-NN classifier (as was done in [12]) and
additionally an SVM classifier. Specifically, we classify the baseline transformed features using
the same source SVM classifier that was used as initialization to our max-margin feature transform
method.

In addition we also present the PMT-SVM method as a baseline for this setting. However, since
this method can not be applied directly so we first learn the individual transforms for the known
categories and average them to provide a category independent shift.

Following the experimental setup of [12] we use the Office dataset and allow 20 labeled examples
per category in the source and 10 labeled examples for the first 15 object categories in the target.
The experimental results for the domain shift of webcam→dslr are evaluated and shown in Table
3; MMDT outperforms all baselines. One additional point to note is that the averaging PMT-SVM
approach performs identically to the source SVM approach, indicating that averaging the offsets
learned per category in PMT-SVM does not yield any category independent information.

5 Conclusion

In this paper we presented a linear SVM domain adaptation technique that combines the ability of
feature transform-based methods to perform multi-task adaptation with the performance benefits of
directly adapting classifier parameters. We validated the computational efficiency and effectiveness
of our method using two standard benchmarks used for image domain adaptation. Our experiments
show that our method is a competitive domain adaptation algorithm and is successfully able to
generalize to novel target categories at test time. In addition, these benefits are offered through a
framework that is both faster than prior transform-based methods and achieves higher classification
accuracy.

So far we have focused on linear transforms because of its speed and scalability; however, our
method can also be kernelized to include nonlinear transforms.
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