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Abstract
We address the problem of retrieving and detecting objects based on open-vocabulary natural language queries: Given
a phrase describing a specific object, e.g., “the corn flakes box”, the task is to find the best match in a set of images
containing candidate objects. When naming objects, humans tend to use natural language with rich semantics, including
basic-level categories, fine-grained categories, and instance-level concepts such as brand names. Existing approaches to
large-scale object recognition fail in this scenario, as they expect queries that map directly to a fixed set of pre-trained
visual categories, e.g., ImageNet synset tags. We address this limitation by introducing a novel object retrieval method.
Given a candidate object image, we first map it to a set of words that are likely to describe it, using several learned image-
to-text projections. We also propose a method for handling open vocabularies, i.e., words not contained in the training
data. We then compare the natural language query to the sets of words predicted for each candidate and select the best
match. Our method can combine category- and instance-level semantics in a common representation. We present extensive
experimental results on several datasets using both instance-level and category-level matching and show that our approach
can accurately retrieve objects based on extremely varied open-vocabulary queries. Furthermore, we show how to process
queries referring to objects within scenes, using state-of-the-art adapted detectors. The source code of our approach will
be publicly available together with pre-trained models at http://openvoc.berkeleyvision.org and could be
directly used for robotics applications.
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1. Introduction

Visual recognition can semantically ground interaction in a physical environment: when we want a robot to fetch us
an object, we may prefer to simply describe it in words, rather than use a precise location reference. But what label to
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“Please, select the ”

a) bottle which is lying down / pepper sauce bottle please / Tabasco / bottle of
Tabasco sauce / Tabasco brand sauce / sauce here / Tabasco pepper sauce / red
Tabasco sauce / small glass bottle
b) empty corn flakes box / white box of cereal / corn flakes / corn flakes pack /
corn-flakes packet / Kellogg’s corn flakes

Fig. 1. An open-vocabulary object retrieval task. A user describes an object of interest using natural language, and the task is to select
the correct object in a set or scene. A mixture of instance-level and category-level references are typically provided by users when
naturally referring to objects. The phrases listed in (a) and (b) were produced by users referring to the first images in the top and bottom
rows, respectively.

use? ImageNet synsets? LabelMe tags? Should we refer to its fine-grained category, brand-name, or describe the specific
instance? Or maybe use product identifiers from an online merchant? Clearly, we need visual recognition methods which
accommodate the full range of natural language and situation-specific lexical biases when resolving users’ references to
objects (Furnas et al. 1987).

Large-vocabulary object recognition has recently made significant advances, spurred by the emergence of dictionary-
scale datasets (Deng et al. 2010, Lin et al. 2011). Dramatic progress has been made on category-level recognition
(Krizhevsky et al. 2012), where each image is classified as one or more basic-level nouns, e.g. bird, car, bottle, and
on fine-grained recognition of hundreds of specific species or subcategories, e.g. sparrow, Prius, Coke bottle (Berg et al.
2013). Addressing the open-vocabulary problem that arises when natural language strings are the label space requires
recognizing potentially millions of separate categories (Agrawal et al. 2013). In the robotic perception setting, detecting
object instances often requires good RGB-D models of the actual objects to be recognized (Tang et al. 2012, Xie et al.
2013), and therefore do not scale well to more than a hundred objects.

This paper is an extended and reviewed version of Guadarrama et al. (2014). In this paper following on our previous
work we address the task of open-vocabulary object retrieval using descriptive natural language phrases by combining
category and instance level recognition. Given a phrase describing a specific object, our goal is to retrieve the best match
from a set of unlabeled image regions containing candidate objects. As illustrated above, this problem arises in situated
human-machine interaction: users interacting with situated robots often refer to objects of interest in a physical environ-
ment using natural language utterances. For example, a user might ask a robot to find and bring “empty corn flakes box”
(Fig. 1). In such scenarios, humans rarely name an object with a single basic-level noun (e.g., “box”). Rather, they use a
rich and varied set of words including attributes (e.g., “white”), brand names (e.g., “Kellogg’s corn flakes”), and related
concepts (e.g., “cereal”). In fact, in our experiments, human subjects mentioned the main category noun in only 60%

percent of descriptions. Further, even when they do use a basic-level category—“box”, in this example—the precision of
retrieval using that category may be much lower than that obtained by directly matching an image instance, e.g., matching
the logo likely associated with “Corn Flakes” here.
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Fig. 2. Multiple image projections project a candidate image windows into a semantic text space, by employing text associated with
synset definitions and text associated with matched images. The user’s query is also projected into this space, and the closest match is
returned.

While generating descriptive nouns, attributes, and/or phrases from an image is a topic of recent interest (Kuznetsova
et al. 2013, Deng et al. 2012, Ordonez et al. 2013), the challenge of retrieving an image or object from within a scene
using natural language has had less attention (but see Guadarrama et al. (2013), Tellex et al. (2012, 2011)). We frame
the problem as one of content-based image retrieval, but searching a relatively small set of potential distractors rather
than sifting through a large image corpus. Our method is inspired in part by recent methods which employ image-to-text
projections for large-scale recognition (Weston et al. 2011, Socher et al. 2012, Frome et al. 2013). Instead of mapping an
image to a set of category labels, we map it to a sparse distribution over an open-vocabulary text space. This allows us
to predict words related to the specific object image at the level of instances, fine-grained categories, or categories at any
level of the semantic hierarchy, plus other words related to the object.

We propose an approach that leverages the semantics of categories, subcategories, and instance-level semantics, com-
bining them in a common representation space defined by word distributions (Fig. 2). Candidate images are projected
into the common space via a set of image-to-text projections. We propose a combination scheme that ranks the candidate
images in a cascaded fashion, using projections in the order of highest to lowest expected precision, until a confident match
is found.

Our framework incorporates a variety of category classification and instance matching methods to define image-to-text
projections. At the category level, we consider both a conventional bank of linear SVMs on sparse coded local features
(Deng et al. 2010) and a deep convolutional model trained on ImageNet (Krizhevsky et al. 2012), including a version that
can recognize 7,400 different objects, and define the projection to a text space based on the text that defines the associated
synset. At the instance level, we use large-scale image search engines (IQEngines 2014, Google 2014) to index product
images and other images available on the web to find matching web pages, and take the text from those pages. We expand
query terms using the Freebase API (Freebase 2014), so that semantically related terms are included such that the chance
of a match is increased for each projection (at some cost to precision but improving the coverage, as our experiments
reveal).

We evaluate our methods on a subset of ImageNet test data corresponding to categories which are relatively dense
with household product objects, and on new images collected in a robotics laboratory. We show each image to human
annotators and ask them to provide a description for a robot to retrieve it from a room in their home. We then evaluate our
method’s ability to find the correct object in simulated scenes of varying complexity. In our experiments, we presume that
object bounding boxes are known (in a deployed system see Section 5, we rely on bottom-up segmentation or “objectness”
to provide a region shortlist).

To the best of our knowledge, ours is the first method proposed to fuse instance-level and category-level semantics
into a common representation to solve open-vocabulary reference tasks. Our results show that our sequential cascade
approach outperforms a variety of baselines, including existing category-level classifiers or instance-level matching alone,
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or a baseline formed by matching images returned by a text-based image search as proposed in Arandjelovic & Zisserman
(2012).

2. Related Work

Object recognition and content-based image retrieval each have a rich history and a full review of either is beyond the
scope of this summary; most relevant to this paper perhaps is the relatively recent work on large scale categorization. Many
approaches are trained on ImageNet (Deng et al. 2010), and output a single category label (Deng et al. 2012, Krizhevsky
et al. 2012), while others try to generate proper natural language descriptions (Farhadi et al. 2010). Recent efforts have
investigated increasingly fine-grained recognition approaches (Farrell et al. 2011, Parkhi et al. 2012), predicting e.g., the
specific breed of dogs, or the model and year of a car. Instance-level recognition has a long history in computer vision
(Lowe 1999, Moreels et al. 2004, Philbin et al. 2007, Sivic & Zisserman 2003), and has been successfully deployed in
industry for a variety of products (e.g., Google Goggles).

In robotics perception it has shown very good results in instance recognition when training from RGB-D data of the
objects of interest (Tang et al. 2012, Xie et al. 2013). However these approaches generally require precise RGB-D models
of the objects to be recognized and therefore do not scale beyond a predifined set of objects. Recent work (Krishnamurthy
& Kollar 2013) shows how to learn a logical model of object relations to allow for object retrieval. Therefore this paper is
closely related to ours when it comes to the application scenario. Despite the attempt of training one-vs-all classifiers for
hundreds of thousands of labels (Dean et al. 2013), no fixed vocabulary of nouns is sufficient to handle open-vocabulary
queries, which involve arbitrary labels at all levels of semantics, from generic to extremely fine-grained to attribute-level.
More importantly, the amount of supervised data required for each of these constituent problems presents a major barrier to
enabling arbitrary vocabularies. Our proposal can be seen as complementary to previous approaches to object recognition
in robotics (Tang et al. 2012, Xie et al. 2013), in that it handles novel objects and out-of-vocabulary labels.

Earlier work has focused on modeling co-occurrences between image regions and tags (Barnard & Forsyth 2001, Blei
& Jordan 2003), focusing on scenes where the correspondence between image regions and tags is unknown. Hwang and
Grauman (Hwang & Grauman 2012) propose to extract features from a given ordered list of tags and use them to estimate
the size and location of an object in an image. In contrast, we don’t assume that we have paired text and images for
training, we use them only for validation and testing.

A related line of work embeds corresponding text and image pairs in a common space, such that both the image and
the text end up at nearby locations (Canonical Correlation Analysis, Kernelized Canonical Correlation Analysis, etc.).
The major limitation of such embeddings is that they in general do not include both category- and instance-level labels,
and require training images paired with text. In our case, such data is available for some objects through search-by-image
engines, but not for all. The work of (Sharma et al. 2012) proposes a general framework for supervised embeddings; this
and related efforts could be profitably applied to enhance our representation, assuming one could obtain a lot of images
paired with text, but is not necessary to obtain the results we report in this paper.

Caption-based retrieval methods (Kulkarni et al. (2011), etc.), map images to text captions, but focus on scenes rather
than objects and category-level rather than instance-level information. Moreover, they rely on captioned images for training
data. Several web-scale image tagging methods consider applications to tag-to-image search, or image retrieval using text-
based queries (Grangier & Bengio 2007, Krapac et al. 2010, Liu et al. 2009, Lucchi & Weston 2012). Most have been
limited to one-word queries and category-level tags, e.g., pool, and cannot handle phrase queries or queries that may
contain instance-level tags, e.g., Froot Loops cereal.

Instance recognition methods try to find a set of relevant images given a query image. For example, Gordoa et al. (2012)
proposed to use category-level labels to improve instance-level image retrieval and use a joint subspace and classifier
learning to learn a projection in a reduced space using category labels.
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Fig. 3. Instance and category information are often complementary. The image on the left is overlaid with candidate image windows,
computed using the selective search method of Uijlings et al. (2013). Extracted regions are shown on the top row. Below each region
is the image that was the best match found by a web-scale instance search. Text below this matching image shows the corresponding
instance-level projection; text below that (in italics) shows the category-level projection derived from Deep Convolutional Imagenet
Classifiers (DECAF) (φDEC ). In this example the instance-level projection would likely be able to resolve 3 of 6 objects for typical
user queries in this scene (ketchup, toothpaste, bar of soap), while the category-level projection could likely resolve 2 of 6 (ball, pen).
The liquid soap container was missed by the selective search in this example but is reasonably likely to have been recognized as a bottle
by the DECAF models.

Another line of work within image retrival is (Arandjelovic & Zisserman 2012, Chatfield & Zisserman 2013), where
authors try to find a set of relevant images in a dataset given a short text query. Arandjelovic & Zisserman (2012) proposes
using Google Image Search to find candidate image queries and then use those to rank the images in the dataset. However,
they use a very restricted set of queries, and a small dataset. Nonetheless, we evaluate this method as a baseline to compare
against our method, as reported below. Chatfield & Zisserman (2013) also propose to use Google Image Search to train
an object classifer on-the-fly and use it to rank the images in the dataset. In this case authors use a large set of distractors
from ImageNet, but only evaluate their approach on Pascal VOC 2007, where there are just 20 classes. It is not clear if
their approach could be used for thousands of classes with open-vocabulary queries like ours.

In the video retrieval setting, several papers addressed the problems created by using natural language in the queries
(Li et al. 2007, Natsev et al. 2007, Rasiwasia et al. 2007, Snoek et al. 2007, Neo et al. 2006); more recently (Dalton et al.
2013) addressed the problem of zero-shot video retrieval using content and concepts.

3. Open-vocabulary object retrieval

We now formalize the problem of retrieving a desired object using a natural language query. Rather than constraining the
description to a closed set of categories, a free-form text query q ∈ Q is provided. For example, the user can search for
“the tennis ball” or “the Dove soap” in Fig. 3.

The task is to identify which of a set of candidate images (or image regions) C = {c1, c2, . . . , ck} is the best match
for the query q. We assume each ci contains a single object. We are therefore searching for a map fC : Q → {1, . . . , k}.
In particular, we compute a score r(q, ci) for each of the candidate objects and choose the one with the highest value:

fC(q) = argmax
1≤i≤k

r(q, ci) .

In the case of a finite label space Q, a standard vision baseline would regard the elements of Q as disjoint classes and
learn classifiers for each of them. We could then choose the candidate object with the highest classifier score. However, in
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our scenario, we have unconstrained natural language queries, where learning a classifier for each element using traditional
supervised learning is not an option, because not all query words could be observed at training time.

Therefore, our score function is based on comparing the given text query q withm different representations of an image
in a weighted open-vocabulary text space. In particular, we define a set of functions Φ = {φj}, j = 1, ...,m, that project a
given image ci into a sparse vector of words, i.e. S = {(wn, βn)|n ∈ N} with words wn being the key and corresponding
weights βn ∈ R being the values of the sparse vector. We define a similar projection ψ for the given query. Each of the
proposed projections φj results in a sparse representation based on the particular semantics that that specific function can
extract from the image. In this paper we define five image-to-text projections, Φ = {φIQE , φGIS , φDEC , φLLC , φCAF },
where the first two are instance-level and the last three are category-level. Fig. 3 illustrates the respective strengths of
category- and instance-based projections for several example objects.

Once the images are projected into the weighted text space, we compute the similarity of each projection’s weight
vector φj(ci) to the query’s weight vector ψ(q). The similarities are combined across all projections to produce the final
ranking using a cascade Cas:

r(q, ci) = Cas(s(ψ(q), φ1(ci)), ..., s(ψ(q), φm(ci)))

where s(·, ·) is the normalized correlation (or cosine angle). We describe each step of the algorithm below in detail.
We stress that our method is general and can accommodate other projections, such as projections that capture attribute-

level semantics. For example, a variety of attribute projections could be defined, including those based on color (Van De
Weijer et al. 2009), basic shapes, or based on surface markings such as text. For instance, one could incorporate OCR-based
projections, as they provide a text attribute that is highly precise when it matches.

3.1. Category-based projections

We learned three category-based projections, φLLC , φDEC , φCAF , each with a different set of categories. The first one,
φLLC , uses a bank of linear SVM classifiers over pooled local vector-quantized features learned from the 7,000 bottom
level synsets of the 10K ImageNet database (Deng et al. 2010). The second model, φDEC , makes use of the Deep Con-
volutional Network (DCN) developed and learned by Krizhevsky et al. (2012) (the winning entry of the ILSVRC-2012
challenge) using the DECAF implementation (Donahue et al. 2013). The output layer consisted of 1,000 one-vs-all logistic
classifiers, one for each of the ILSVRC-2012 object categories. The third model, φCAF , is a new DCN for visual recogni-
tion based on extending the DCN 1K ILSVRC-2012 of Donahue et al. (2013) and Krizhevsky et al. (2012) to a larger DCN,
by replacing the last layer with 7,400 labels and then fine-tuning on the 7K Imagenet-2009 fall release. It was implemented
with the Caffe framework (improved version of DECAF) available at http://caffe.berkeleyvision.org/.

We refer the interested reader to the corresponding publications for further details about these methods. The methods
we use are indeed partially redundant and within a robotics application one would restrict them to just a few category-based
restrictions. However, in this paper, we also aim at comparing different projections and their suitability for open-vocabulary
object retrieval (Section 4.4). We want to remark that Caffe and DECAF are open source, and that we are releasing the
learned DCN models used in this work at http://openvoc.berkeleyvision.org, which are ready to be used
by researchers working on robotics applications or on object retrieval.

Given the classification result, a traditional category-based approach would project an image to a vector with non-zero
elements corresponding only to the text representation of its predicted label, e.g. can. However, only using a single label
is likely to be error prone given the difficulty of category-based recognition. An image is therefore projected to the set of
words wn consisting of all synset synonyms, e.g. can, tin, tin can, with weights βn corresponding to the corresponding
predicted category probability. When the query description only consists of a single word, the resulting similarity score
reduces to the sum of the predicted probabilities for the corresponding synsets.

http://caffe.berkeleyvision.org/
http://openvoc.berkeleyvision.org
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More specifically, we define the LLC-10K projection as φLLC(ci) = {(wn, p(wn|ci))} with wn being a word in a
synset’s list of synonyms and p(wn|ci) being the posterior probability of the synsets where the word appear. A word can
appear in more than one synset, so more frequent words would have a higher weight. To obtain the posterior probabilities
for all the 10K synsets, we learn conventional one-vs-all classifiers on the leaf nodes, 7K in this case, obtain probability
estimates for the leaves (via Platt scaling Platt (1999)), and then sum them to get the 3K internal node probabilities, as
proposed in Deng et al. (2012).

The DECAF-1K projection φDEC is defined similarly with the only difference being that the posterior probabilities
for the 1K nodes are given directly by the output-layer of the deep architecture (Donahue et al. 2013).

The CAFFE-7K projection φCAF is defined similarly with the only difference being that the posterior probabilities
for the leaves (7K) are given directly by the output-layer of the new learned DCN. All category projections φLLC , φDEC ,
φCAF project an image into a weighted set of 18K words, corresponding to all the words from the synset synonyms in
10K synsets used from WordNet.

Fig. 4. Examples of category recognition with state-of-the-art CNN-based approaches: http://caffe.berkeleyvision.org.

3.2. Instance-based projection

While category-level recognition has received a lot of attention in the last decade, it was rarely combined with ideas from
instance-level or exemplar-based approaches outside image retrieval. This can be attributed to the high intra-class varia-
tions of the categories commonly used to evaluate the methods, variations that make restrictive exemplar-based matching
problematic. However, especially indoors, we are surrounded by all kinds of products, where most of the intra-class varia-
tion originates from different viewpoints and capture conditions. This fact can be exploited by exemplar-based approaches
efficiently and allows for exact matching of objects parts and geometric reasoning.

The instance-based projections φIQE and φGIS used in our approach rely on large-scale image matching databases
and algorithms which have been previously reported in the literature and have been available as commercial services for
some time.

For φIQE , we use IQ Engines’ (IQE) fully automated image matching API IQEngines (2014)1, which takes an image
as input and provides a text output as a result, which is directly used as an image-to-text projection. The IQ Engines API
indexes over one million images, mostly scraped from shopping webpages, using local feature indexing with a geometric

1 IQ Engines has since been aqcuired by Yahoo Inc.; similar services include Google’s search-by-image, which we also evaluate in this study, and
CamFind (http://camfindapp.com)

http://caffe.berkeleyvision.org
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verification paradigm Lowe (1999), Nister & Stewenius (2006). Each image in the database and each given query input
image is represented by local features extracted at interest points. The first step of the matching is then to determine
a candidate set by performing a k-nearest neighbor search using a visual bag-of-words signature computed from the
local features. After obtaining the candidates in the product database, local feature matching is performed together with
geometric validation and the description of the best matching image is returned. This technique can be seen as a version of
the query expansion strategy of Chum et al. (2007). Given the best matched image, the corresponding product description
is returned.

The φGIS projection is similar but based on the results of image-based queries to the Google Image Search (GIS)
service. This service tries to match a given image with similar web images and returns a set of links in a fashion similar to
the IQ Engines API service.

Both projections φIQE and φGIS are defined using a bag of words over the text returned by either IQ Engines or from
the webpage summaries returned by Google Image Search. For example, for the image of the spam in Fig. 7, IQ Engines
returns the following text “Hormel Spam, Spam Oven Roasted Turkey”, while Google Image Search returns the best guess
“spam” and links containing text like “do you use email in your business the can spam act establishes . . . ”. Additional
examples are shown in Fig. 5.

Fig. 5. Examples of instance matching with Google Image Search’s search-by-image service.

3.3. Textual query expansion

The final projection ψ performs textual query expansion Carpineto & Romano (2012), Manning et al. (2008) to relate brand
names to corresponding object categories and also to tackle rare synonyms not present as synsets in ImageNet. Our textual
query expansion technique is based on the large semantic concept database Freebase Bollacker et al. (2008). A given
description q is parsed for noun groups using the standard NLP tagger and parser provided by the nltk framework2. A
noun group could be, for example, the brand name “cap’n crunch”. For each noun group, we query the Freebase database
and substitute the non-synset noun group w with ψ(w), if the query did return a result. The function ψ transforms w

into a different set of words by searching for /common/topic/description entries in the Freebase results and
concatenating them. After expansion, we can compare the projected weight vector with the weight vector obtained with

2 http://nltk.org/

http://nltk.org/
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one of the image-to-text projections φj described in the previous section. Note that more frequent words would have higher
weight, as before. For example “tazo chai tea” is expanded to “Iced tea is a form of cold tea, usually served in a glass with
ice . . . popular packaged drink . . . ” Here the italicized words are terms that are also found in the corresponding synset
descriptions of the object to which the user was referring, thus this projection expands the query to include category-level
words.

Fig. 6. Overview of approach: to evaluate how closely an image region matches a user’s text query, the query is first expanded using
Freebase to include words like “fruit” and “smoothie”, then compared with the combined text vectors obtained by the instance and
category projections of the image region.

3.4. Combining similarities: Max-Kernel, Linear-SVM, Rank-SVM and Cascade

As illustrated in Fig. 6, the text vectors φj(ci) obtained by the various image-to-text projections of the image ci can be
combined (e.g., summed) and then used to compute similarity with the expaned query vector ψ(q). In our experiments
we combine the similarities s(ψ(q), φj(ci)) for each projection j computed for each candidate image ci using different
methods. Then the aggregated similarity is used to rank the candidate regions and pick the most similar to the query.

Max-Kernel (MAX) compute the overall similarity using the maximum across all the individual projections (we also
tried other functions like average or minimum, but they performed worse). We also used a Linear-SVM (LSVM) and a
Rank-SVM (RSVM) to learn how to combine the individual similarities. The inputs to the SVMs are the scores from each
of the projections, and they are trained to choose the target object over the distractors. For instance to train the Linear-
SVM we labeled the targets as positive and the distractors as negatives, while to train the Rank-SVM we imposed the
constraints that the targets should be ranked above all the distractors (see Joachims (2002) for details). The output of the
trained models is a global score computed as a weighted combination of the individual projections.

However, based on the observation that different methods have very different precision/recall behavior in this section
we propose a more efficient and accurate approach. We combine the individual similarities with a simple set of sequential
decisions, using an optimized cascade Cas. Our cascade strategy works as follows: we sequentially process through our
j = 1, ...,m image-to-text projections, and if the jth similarity is informative, that is, when similarity for all ci is not the
same (within a small threshold), the result is returned, otherwise we continue with the next image-to-text projection. The
order of the cascade is optimized using a greedy strategy, where the order of the similarity functions and the corresponding
projection methods is determined by the Precision@1-NR (see Section 4.3). In our case, the first projection is based on IQ
Engine, φIQE , which only outputs text in cases where a matching with a product image was successful.
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Fig. 7. Example images from the LAB dataset.

Lab Kitchen

Avg. number of words per description 3.34 4.70
Avg. number of nouns per description 2.19 2.73
Avg. number of adjectives per description 0.32 0.52
Avg. number of prepositions per description 0.27 0.50

Table 1. Statistics of the descriptions we obtained for the two datasets3

Zero scores of the instance-based similarity calculation typically occur when no matches are found by IQ-Engine or
Google Image Search. The category-based methods result in zero similarity scores for examples where no category terms,
i.e. words matching synsets in ImageNet, are part of the given query.

4. Experiments

4.1. New open-vocabulary retrieval dataset

To quantitatively evaluate the proposed approaches, we collected natural language descriptions of images of objects in our
laboratory (“Lab”) as well as from categories in the kitchen/household subtree of the ImageNet hierarchy (“Kitchen”).
Fig. 7 and Fig. 3 illustrate the Lab images, while Fig. 1 illustrates the Kitchen set. Each image was posted on Amazon
Mechanical Turk in order to collect natural language descriptions. For each image, ten individuals were asked to provide
a free-form description of the object in the image as though they were instructing a robot to go through the house and
locate it, e.g.“Robot, please bring me the * fill in the blank *”. The descriptions we obtained are fairly rich and diverse
and Table 1 contains some statistics. There are 183 images annotated in the Lab set and 606 images annotated in the
Kitchen set, additionally there are 74240 images that serve as distractors. Given that for each annotated image there are
10 annotations, for our evaluations we used over 60K combinations of targets, annotations and distractors.

To support the detailed evaluation below, each query provided was additionally labeled by a second annotator as
to whether it appeared to be an “instance” or a “category”-level query. These were selected on the basis of the textual
description without looking at the image they were given for. The instance- and category-level labels were applied when a
query had a brand-name or fine-grained description or had a clear category term directly related to the synset, respectively.
The other queries remained unlabeled. The dataset will be made publicly available.

We created a series of synthetic trials to simulate the scenario shown in Fig. 3. We sample a query image from the
Lab or Kitchen sets and a number of distractors from the same set or from all of ImageNet (“ImageNet”), the latter being
a considerably easier task. The descriptions associated with the query image serve as the object retrieval query. For each

3 Descriptions were tagged using the standard part-of-speech tagger in nltk
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pair of target image and textual description, we sample 10 image distractors from different synsets, obtaining 6060 trials
comprised of 11 images (one is the target) and one text description.

4.2. Baselines

We evaluate the three categorical methods DECAF-1K (DEC), CAFFE-7K (CAF), and LLC-10K (LLC) from Section 3.1,
the two instance-based methods IQ-Engine (IQE) and Google-Image-Search (GIS) from Section 3.2, and their combina-
tions using Linear-SVM (LSVM), Rank-SVM (RSVM) and Max-Kernel (MAX) as given in Section 3.4. Furthermore, we
also show that our Freebase (FB) query expansion proposed in Section 3.3 helps to improve the overall accuracy (denoted
with ’+’ sign in the table).

We also compare all the proposed methods with the best Multi-Query approach of Arandjelovic & Zisserman (2012),
where a given query description is given to Google image search and the similarity of the images with the candidate images
is estimated with a visual bag-of-words pipeline (using the code made available by Vedaldi (2014) and the parameters
specified in the paper: for each query we use the top 8 results given by Google Image Search and encode them using 1M
visual words, for our experiments we used spatial re-ranking for all the comparisons). We refer to the resulting methods
as Multiple Queries Max (MQ-Max) and Multiple Queries Average (MQ-Avg) depending on the pooling performed. This
baseline should not to be confused with the search-by-image service GIS we are using for instance matching, where we
upload each image and get a textual description back (when there is a match) and then compare the results with the query
description.

4.3. Experimental setup

To analyze the methods in detail, we have defined the following performance measures: (1) Coverage is the percentage of
trials in which the method given the text query and the images is able to give an informative answer, that is, the cases in
which it produces different values for the candidates, and therefore the target selection is not random. (2) Precision@1-NR

(Not-Random) is the precision of the 1-st ranked image, computed only on the trials described in (1), i.e. where the method
is able to deterministically select the target object. (3) Precision@1-All measures Precision@1 for all cases including cases
where the method guesses the target randomly since it cannot determine which one is the target.

To learn the parameters of the combined methods Linear-SVM (LSVM), Rank-SVM (RSVM) we used a small vali-
dation set comprised of 100 target images with their corresponding textual descriptions and distractors. To establish the
order for the sequential Cascade method, we order the individual methods by their Precision@1-NR on the validation set
from the highest to the lowest (Table 2).

4.4. Comparing individual projection methods

First, we analyze each image-to-text projection in isolation. The results are given in Table 2 for the Kitchen dataset,
i.e. kitchen domain images from ImageNet used for the target as well as distractor images.

The method with the highest Precision@1-NR value but lowest coverage is IQ-Engine (IQE), which means that the
method is very precise when a match is found but also likely not to return anything (zero similarity values to the candidate
images). The methods with the highest coverage are LLC-10k (LLC) which has the lowest precision, and CAFFE-7K
(CAF) which has a slightly higher precision, meaning that these method are likely able to allow for proper candidate
selection, but are not as precise as IQE.

Based on the results of Table 2 the instance-based projections (IQE and GIS) have higher Precision@1-NR (they
tend to be correct when they provide an answer), while category-based projections (DEC-1k, CAF-7k and LLC-10k)
have higher recall (especially when using Freebase query expansion). We can also see that the Freebase query expansion
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Method P@1-NR Coverage P@1-All

MQ-Max (Arandjelovic & Zisserman 2012) 60.62% 52.73% 40.34%
MQ-Avg (Arandjelovic & Zisserman 2012) 58.57% 52.73% 38.86%

IQ-Engine (IQE) 80.44% 25.30% 32.41%
Google-Image (GIS) 69.88% 51.77% 44.22%
DECAF-1k (DEC) 67.70% 66.86% 50.93%
DEC+FB (DEC+) 61.71% 78.24% 52.06%
CAFFE-7k (CAF) 59.86% 79.94% 51.03%
LLC-10k (LLC) 57.89% 79.94% 49.80%
CAF+FB (CAF+) 54.14% 88.66% 50.04%
LLC+FB (LLC+) 52.63% 88.66% 48.63%

Table 2. Comparison of projections on the validation set of the Kitchen dataset. P@1-NR: Precision@1 for Not-Random answers;
Coverage: Percentage of Covered queries; P@1-All: Precision@1 for All queries

Fig. 8. Images retrieved by Google Image Search search-by-text for the queries “potato chips” and “pringles” (first and second from
the left) vs the results retrieved via search-by-image given the input image of a Pringles can (far right).

technique we proposed in Section 3.3 mainly increases the coverage but reduces the precision, which is an intuitive result
because the number of keywords in a query increases significantly due to expansion.

Although both GIS and MQ-Max/Avg rely on Google Image Search, the first one uses search-by-image while the
second one uses search-by-text functionality. To illustrate the difference in their behavior let us consider the results of
two different queries, “potato chips” or “pringles”, using search-by-text (as used by MQ-Max and MQ-Avg). They return
two very different sets of images (see Fig. 8) that will make the algorithm to fail to recognize the image of the Pringles
when the query is “potato chips”. On the contrary, given the image of the Pringles, GIS with search-by-image will find a
match for Pringles and potato chips and handle both queries correctly. Another important difference between our instance
matching methods (IQ and GIS) and the multi-query methods (MQ-Max or MQ-Avg) is the size of the pool of candidate
images, while the instance matching relies on millions images, multi-query methods relies on a few downloaded images.
As can be seen in Table 2 GIS has better precision than MQ-Max and MQ-Avg, while having similar coverage.

According to Table 3 the instance-based projections (IQE and GIS) perform better in the Lab and Kitchen experiments,
where there are more products and instances. They perform worse in the ImageNet experiment, where there are less
products and more generic objects. On the other hand, the category-based projections (DEC-1k, CAF-7k and LLC-10k)
perform better on the ImageNet experiment, with CAF-7k and LLC-10k performing best due to broad coverage. However,
they perform worse in the Lab experiment.
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Method Lab Kitchen ImageNet

MQ-Max (Arandjelovic & Zisserman 2012) 35.26% 40.34% 43.43%
MQ-Avg (Arandjelovic & Zisserman 2012) 33.40% 38.86% 41.42%

IQ-Engine (IQE) 48.59% 32.85% 24.46%
Google-Image (GIS) 48.30% 44.45% 39.19%
DECAF-1K (DEC) 43.36% 50.73% 53.13%
DEC+FB (DEC+) 42.19% 52.13% 54.05%
CAFFE-7K (CAF) 44.70% 51.34% 57.50%
CAF+FB (CAF+) 42.19% 50.04% 56.82%
LLC-10K (LLC) 40.05% 49.57% 57.24%
LLC+FB (LLC+) 37.85% 41.25% 56.27%

Linear-SVM (LSVM) 45.75% 58.90% 63.65%
Rank-SVM (RSVM) 56.40% 62.49% 72.62%
Max-Kernel (MAX) 49.51% 61.11% 68.49%

IQE,GIS 56.37% 51.86% 58.86%
IQE,GIS,DEC 64.09% 60.95% 75.04%
IQE,GIS,DEC,CAF 66.45% 64.15% 80.13%
IQE,GIS,DEC,CAF,LLC 66.76% 65.10% 81.50%
Full Cascade (CAS+) 67.07% 66.20% 81.93%

Table 3. Precision@1-All the queries for the three experiments and for all the methods.

4.5. Combining image-to-text projections

The main results of our object retrieval experiments are given in Table 3 for our lab images and the kitchen domain images
from ImageNet with distractor images from the same domain or random ones sampled from other synsets of ImageNet not
necessarily related to the kitchen domain. The table itself also gives a good summary of the results of individual methods,
although only focusing on the P@1-All performance measure.

The best individual method depends on the experiment; for instance in the Lab experiment, the best is IQ-Engine (IQE)
with P@1-All 48.59%, in the Kitchen experiment, the best one is DECAF-1K+Freebase (DEC+) with P@1-All 52.13%,
and in the ImageNet experiment, the best one is CAFFE-7K (CAF+) with P@1-All 57.50%. However, we are able to
outperform the method of Arandjelovic & Zisserman (2012) in all cases.

More importantly, we are able to combine all similarity and projection methods with our cascade combination, which
outperforms all individual methods and other combinations. The best combined method is consistently the Full Cascade
(CAS), with P@1-All 67.07% for Lab, with P@1-All 66.20% for Kitchen and with P@1-All 81.93% for ImageNet. Other
more sophisticated combination techniques lead to an inferior performance. In the case of LSVM and Rank-SVM this can
be contributed to a weak linear combination model that tries to combine very heterogenous scores.

The last rows of Table 3 show how each method when added to the sequence improves the performance. Since the
components are added by decreasing order of precision, the following model will only be responsible for the cases where
the previous model could not provide an answer. It can be seen that instance-based projections IQ and GIS are quite
complementary and combining them provide a significant improve across all the experiments (see IQE,GIS).

Although all the category-based projections (DEC-1k, CAF-7k and LLC-10k) try to capture a good representation of
categories, they use different features (see Section 3.1 for details) and an increasing number of categories from 1k up to
10k. These differences allow for diversity in the combination and improve performance. Furthermore, the queries people
used to refer to objects often either contain a category or an instance-type description. All of the individual methods alone
(without freebase) can handle only a single type of queries. Combining their strengths is not only reasonable but also
straightforward with our simple cascade technique. The biggest jump of the performance can be observed when the first
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Method Category Instance Unlabeled

MQ-Max (Arandjelovic & Zisserman 2012) 27.65% 51.61% 36.52%
MQ-Avg (Arandjelovic & Zisserman 2012) 26.09% 49.18% 31.96%

IQ-Engine (IQE) 40.41% 67.18% 52.93%
Google-Image (GIS) 40.46% 66.69% 53.95%
DECAF-1K (DEC) 48.15% 25.42% 48.38%
CAFFE-7K (CAF) 48.80% 30.79% 44.20%
LLC-10K (LLC) 44.00% 25.92% 42.94%

Linear-SVM (LSVM) 47.67% 39.13% 43.17%
Rank-SVM (RSVM) 54.33% 69.73% 58.76%
Max-Kernel (MAX) 50.08% 49.10% 52.63%

Full Cascade (CAS) 62.92% 76.58% 65.95%

Table 4. Detailed analysis of Precision@1 for the Lab experiment by type of query. Among the 1830 queries, 53% were labeled as
Category, 18% were labeled as Instance and the rest remained Unlabeled.

category-based method (DEC) is added to the cascade (Table 3), the performances improves over 8 percent points for all
datasets. After this we only get slight improvements from different category-based methods.

4.6. Which method is helping for which type of query?

To further analyze the difference in performance between methods we conducted a detailed analysis of Precision@1 for
the Lab experiment by type of query (see Table 4). From this table it can be seen that MQ-Max and MQ-Avg perform
much better when the query contains an Instance (i.e “Pringles”) than when it contains a Category (i.e. “potato chips”)
describing the object of interest (see Fig. 8). Also we can see the importance of using a large scale database of images to
get good instance matching, and the results obtained by IQE and GIS are significally better that MQ-Max and MQ-Avg
even for queries containing Instances.

Overall the instance-level projections IQE and GIS show a higher Precision@1-All on the instance queries than the
category-based projections DECAF-1K, CAFFE-7K and LLC-10K and vice versa for the category queries. Among the
category-based projections, CAFFE-7K has the highest Precision@1-All on the category and instance queries, showing
the better capabilities of the new trained DCN to handle fine-grained object recognition.

As can be seen in Fig. 3, and in the results of the combined methods show in Table 3, the category and instance-level
methods benefit from each other in the combination and can be thus considered as orthogonal concepts. A further proof
for this fact can be seen in detail when looking on the results for queries labeled as category or instance-level queries in
the dataset, which are given in Table 4.

4.7. Runtime discussion

For robotics applications, where runtime is an important issue when making predictions, we suggest to use CAFFE-7K
as a category-based projection, since it offers very fast prediction with around 2s per 256 test images, including 1.5s to
read and preprocess them (using 4 cores) and 0.5s to run the DCN in Caffe (using a Titan GPU, 6s in CPU mode). The
additional runtime for GIS, IQE and the Freebase query expansion depends on the speed of the proprietary web service, but
was in the order of a few seconds in our experiments. Furthermore, our approach offers easy parallelization by distributing
the different modules on several machines. Taking into account that in total we are dealing with a recognition system
learned with several million images and thousands of categories, this is a remarkable runtime and a great opportunity for
improving robotics applications that need to deal with everyday-life objects.
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motociclista"

"pringles" "barilla pasta" "listerine
mouthwash"

"listerine""listerine"

Candidate windows Category recognition with LSDA CNN-7k

Instance recognition results

baby powder: 1.9

cream: 2.1Dewar flask: 2.1

chair: 2.2

washer: 2.2

cylinder lock: 2.3

laptop: 2.3

tin: 2.7

helmet: 4.1

rugby ball: 4.1

operating microscope: 2.1

bullhorn: 2.0

coffee can: 2.2
water bottle: 3.1

sclerometer: 2.1

printer: 2.1

Fig. 9. Robot scene: Detection results of the category and instance recognition methods.

5. Open-vocabulary Object Detection

In previous sections and in our previous work Guadarrama et al. (2014), we had assumed that our algorithm operates
in classification mode, i.e. it receives cropped images as input, each containing a single object. In practical scenarios,
we would want it to also locate objects in larger scenes, i.e. to operate in detection mode. In the following, we show
results obtained by combining state-of-the-art detection methods with our open-vocabulary techniques. This leads to an
end-to-end open-vocabulary detection pipeline, which provides an extremely powerful tool for robotics.

Both classification and detection are key visual recognition challenges, though historically very different architectures
have been deployed for each. Very recently, object detection methods have made significant advances in terms of perfor-
mance (Girshick et al. 2014) as well as in terms of the number of categories that can be detected simultaneously (Hoffman
et al. 2014).

5.1. Open-vocabulary Object Retrieval with Adapted RCNN Detectors

The recent RCNN detection model (Girshick et al. 2014) has shown state-of-the-art performance on the Pascal VOC
challenge (Everingham et al. 2010) and on the ImageNet200 detection challenge (Russakovsky et al. 2014). However,
these challenges only contain 20 and 200 categories, respectively. Unlike large-scale classification training data which we
used for our classifiers above, detection training data for other categories is generally unavailable. For our open vocabulary
object retrieval, we need to be able to detect (localize and classify) thousands of different categories. Fortunately, the
LSDA method of Hoffman et al. (2014) proposes an adaptation method to transform object classifiers into RCNN object
detectors. Using their method, we are able to transform our CAFFE-7k object classifiers into a LSDA-7k object detectors.
As before, we also ascend the hierachy from the leaf nodes to get predictions for all 10k categories. In the following, we
briefly describe RCNN as well as the LSDA technique.



16 Journal name 000(00)

"Bring me the pringles."

Retrieval ranking (instance and category combined)

"Bring me the pasta box."

"Bring me the helmet."

Retrieval ranking (instance and category combined)

Retrieval ranking (instance and category combined)

1.

1.

1.

2.

2.

2. 3.

3.

3. 4. 5. 6.

4. 5. 6.

4. 5. 6.

Retrieval ranking (category recognition only)

1. 2. 3. 4. 5. 6.

Fig. 10. Retrieval results for the robot scene (Fig. 9) and three different user queries.
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"odwalla juice"

Candidate windows Category recognition with LSDA CNN-7k

Instance recognition results

soapbox: 1.1

bevel: 1.1

water cooler: 1.2

cream: 1.3
baby shoe: 1.4

round−bottom flask: 1.4

bowl: 1.8

bone china: 2.1

harmonica: 2.5

cup or mug: 2.6

water bottle: 2.7

disposal: 3.2

coffee maker: 3.4

table: 3.6

cruse: 4.0
stapler: 4.0

"superfood juice"

Fig. 11. Table scene: Detection results of the category and instance recognition methods.

"Bring me the empty bottle."
Retrieval ranking (instance and category combined)

"Bring me the pasta bowl."
Retrieval ranking (instance and category combined)

"Bring me the odwala juice."
Retrieval ranking (instance and category combined)

1. 2. 3. 4. 5. 6.

1. 2. 3. 4. 5. 6.

1. 2. 3. 4. 5.

Fig. 12. Retrieval results for the table scene (Fig. 11) and three different user queries.
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Region Proposals for RCNN The RCNN detector of Girshick et al. (2014) obtains automatic object proposals (bounding
boxes likely to contain objects) from a scene, and then classifies them with a convolutional neural network. Object proposal
generation has been an active area of research in computer vision in recent years (Arbeláez et al. 2014, Krähenbühl &
Koltun 2014, Zitnick & Dollár 2014, Uijlings et al. 2013). Given the importance of good region proposals Hosang et al.
(2014), researchers have studied the problem of using depth images to improve the quality of object proposals (Lin et al.
2013, Gupta et al. 2014). Gupta et al. (2014), used depth information to obtain improved contours from RGB-D images
via a multiscale combinatorial grouping framework (Arbeláez et al. 2014) to report great improvements over RGB only
methods, obtaining the same recall with an order of magnitude fewer regions as compared to RGB only methods.

In the experimental results in Section 5.2, we used the selective search method of Uijlings et al. (2013), which performs
well with a running time of 2 seconds per image. Faster alternatives include the geodesic object proposal approach of
Krähenbühl & Koltun (2014), since it can obtain good proposals in under 0.25 seconds. Furthermore, a method that uses
depth information like Gupta et al. (2014) could be used if RGB-D data were available to improve performance and if a
processing time of around 12 seconds per image is not a critical roadblock for the application.

Large-Scale Detection through Adaptation (LSDA) It is much cheaper and easier to collect large quantities of classifica-
tion training data with image-level labels from search engines than it is to collect detection training data and label it with
precise bounding boxes. The Large-Scale Detection through Adaptation (LSDA) algorithm learns the difference between
the two tasks and transfers this knowledge to classifiers for categories without bounding box annotated data, turning them
into detectors. This can be thought of as adaptation of object models from a classifier domain to a detection domain.
First, LSDA learns convolutional neural network classifiers (AlexNet) for all categories in the 7k ImageNet classification
training database. Next, it learns detectors for categories in the labeled detection training database by finetuning all layers
of the CNN classification network and adding a background class. Finally, for those of the 7k categories without detection
data (all but 200) it adapts the classification output layer (last layer of the neural network) using a transformation based
the change in the output layer for the known detection categories. The result is a convolutional neural network that can
take region proposals and classify them as either on of the 7k categories, or background. The final step is non-maximum
suppression across all detected objects in the scene. We refer the reader to Hoffman et al. (2014) for further details of the
algorithm.

5.2. Results and evaluation

We integrated the LSDA-7k results and ran our instance recognition methods on each object proposal, to obtain an end-to-
end pipeline for open vocabulary object retrieval. Due to the lack of space, we only show the results on two very complex
scenes, which we refer to as robot (Fig. 9) and table scene (Fig. 11).

The pure results of the category and the instance recognition are shown in Fig. 9 for the robot scene. The LSDA-7k
category recognition results are displayed in the right image along with their respective bounding boxes and they are
surprisingly accurate for some categories. However, they are not able to provide very fine-grained and detailed annotations
for example in the case of the “pringles box”. In contrast, the instance recognition approach only gives results for six object
proposals but with instance-level captions, such as “pringles”. The final object retrieval results can be seen in Fig. 10 as
rankings of the object proposals. Whereas the category-only object retrieval fails for the task “Bring me the pringles”, the
combination with instance recognition allows for obtaining the right object. For the “pasta box” task a similar conclusion
can be drawn. In the case of the “helmet”, the LSDA-7k result already provides a perfect match with the query.

Fig. 11 and Fig. 12 show another complex scenario, where we are able to handle very different and challenging queries.
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6. Conclusions

We have proposed an architecture for open-vocabulary object retrieval based on image-to-text projections from compo-
nents across varying semantic levels. We have shown empirically that a combined approach which fuses category-level
and instance-level projections outperforms existing baselines and either projection alone on user queries which refer to
one of a number of objects of interest.

Key aspects of our method include that: 1) images are matched not simply to a pre-defined class label space but
retrieved using a multi-word descriptive phrase; 2) query expansion for unusual terms improves performance; 3) instance
matching can improve category-level retrieval and vice-versa.

Our framework is general and can be expanded to include other projections defined on attributes based on color, text
cues, and other modalities that are salient for a domain. In our opinion, our approach is extremely useful for robotics
applications, because we are the first ones to combine several of the most powerful visual recognition techniques available
today: deep neural networks trained on ImageNet and large-scale image matching. Our framework is just the beginning of
an open source project in open-vocabulary object retrieval and we will provide source code and pre-trained models ready
to use for robotics applications at http://openvoc.berkeleyvision.org.

7. Future Work

While our approach takes significant steps towards allowing natural interaction between a user and a robotic agent, in the
following, we describe several future research directions to further improve its performance and to integrate it into realistic
robotics systems.

Cues from Gesture Recognition Gestures can play an important role in reducing the number of ambiguities during object
retrieval. Let us assume that a robust gesture recognition system is available, such as the ones presented in Pateraki
et al. (2014). One idea to integrate gesture cues would be then to first compute a probability distribution from a pointing
gesture to estimate where the user likely pointed to. This estimation does not need to have a high precision (low entropy
distribution), since we could simply use the values as weights for each hypothesis. Combining these weights with the text
similarities we are currently computing, would allow for selecting the object that fits to the user query and the pointing
gesture.

Novelty Detection and Active Learning Our algorithm currently always assign one of the given hypotheses to the query.
What if the hypothesis detection is not correct or there is simply no object (on the table) that matches the query? An
important research direction will be to extend our algorithm to allowing for rejections of given queries. Whereas this could
be achieved by setting a minimum threshold for the text similarities, it would be beneficial to incorporate ideas from the
area of novelty detection Bodesheim et al. (2013). Furthermore, active learning and classification techniques could allow
for an improved human-machine interaction Kding et al. (2015), Freytag et al. (2014).

Pose Estimation and Grasping Finding the object location is a useful capability, however, further work is needed to
integrate it into a real robotics system that can manipulate objects. In the future, we would like to incorporate our approach
as a first step in an object manipulation system that processes natural language input from a user. Such as system would
need to perform tasks like fine-grained pose estimation and grasp planning. For example, the user could interact with the
system to correct its mistakes, or instruct it to use certain grasping techniques for certain objects, see for example Ralph &
Moussa (2008). We also envision extending our approach to use 3D point cloud data to match objects to extensive online
CAD model databases.

http://openvoc.berkeleyvision.org
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