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Abstract—In this paper, we address the problem of retrieving
objects based on open-vocabulary natural language queries:
Given a phrase describing a specific object, e.g., “the corn flakes
box”, the task is to find the best match in a set of images
containing candidate objects. When naming objects, humans tend
to use natural language with rich semantics, including basic-level
categories, fine-grained categories, and instance-level concepts
such as brand names. Existing approaches to large-scale object
recognition fail in this scenario, as they expect queries that
map directly to a fixed set of pre-trained visual categories, e.g.
ImageNet synset tags. We address this limitation by introducing
a novel object retrieval method. Given a candidate object image,
we first map it to a set of words that are likely to describe it,
using several learned image-to-text projections. We also propose a
method for handling open-vocabularies, i.e., words not contained
in the training data. We then compare the natural language
query to the sets of words predicted for each candidate and
select the best match. Our method can combine category- and
instance-level semantics in a common representation. We present
extensive experimental results on several datasets using both
instance-level and category-level matching and show that our
approach can accurately retrieve objects based on extremely
varied open-vocabulary queries. The source code of our approach
will be publicly available together with pre-trained models at
http://openvoc.berkeleyvision.org and could be directly used for
robotics applications.

I. INTRODUCTION

Visual recognition can semantically ground interaction in
a physical environment: when we want a robot to fetch us
an object, we may prefer to simply describe it in words,
rather than use a precise location reference. But what label
to use? ImageNet synsets? LabelMe tags? Should we refer to
its fine-grained category, brand-name, or describe the specific
instance? Or maybe use product identifiers from an online
merchant? Clearly, we need visual recognition methods which
accommodate the full range of natural language and situation-
specific lexical biases when resolving users’ references to
objects [21].

Large-vocabulary object recognition has recently made sig-
nificant advances, spurred by the emergence of dictionary-
scale datasets [15, 32]. Dramatic progress has been made on
category-level recognition [28], where each image is classified
as one or more basic-level nouns, e.g. bird, car, bottle, and on
fine-grained recognition of hundreds of specific species or sub-
categories, e.g. sparrow, Prius, Coke bottle [7]. Addressing the

“Please, select the ”

a) bottle which is lying down / pepper sauce bottle please
/ Tabasco / bottle of Tabasco sauce / Tabasco brand sauce
/ sauce here / Tabasco pepper sauce / red Tabasco sauce /
small glass bottle
b) empty corn flakes box / white box of cereal / corn flakes /
corn flakes pack / corn-flakes packet / Kellogg’s corn flakes

Fig. 1. An open-vocabulary object retrieval task. A user describes an object
of interest using natural language, and the task is to select the correct object
in a set or scene. A mixture of instance-level and category-level references are
typically provided by users when naturally referring to objects. The phrases
listed in (a) and (b) were produced by users referring to the first images in
the top and bottom rows, respectively.

open-vocabulary problem that arises when natural language
strings are the label space requires recognizing potentially
millions of separate categories [4]. In the robotic perception
setting, detecting object instances often requires good RGB-D
models of the actual objects to be recognized [50, 56], and
therefore do not scale well to more than a hundred objects.

In this paper, we address the task of open-vocabulary
object retrieval using descriptive natural language phrases by
combining category and instance level recognition. Given a
phrase describing a specific object, our goal is to retrieve the
best match from a set of unlabeled image regions containing
candidate objects. As illustrated above, this problem arises
in situated human-machine interaction: users interacting with
situated robots often refer to objects of interest in a physical
environment using natural language utterances. For example,

http://openvoc.berkeleyvision.org
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Fig. 2. Multiple image projections project a candidate image windows into a semantic text space, by employing text associated with synset definitions and
text associated with matched images. The user’s query is also projected into this space, and the closest match is returned.

a user might ask a robot to find and bring “empty corn flakes
box” (Fig. 1). In such scenarios, humans rarely name an
object with a single basic-level noun (e.g., “box”). Rather, they
use a rich and varied set of words including attributes (e.g.,
“white”), brand names (e.g., “Kellogg’s corn flakes”), and
related concepts (e.g., “cereal”). In fact, in our experiments,
human subjects mentioned the main category noun in only
60% percent of descriptions. Further, even when they do use
a basic-level category—“box”, in this example—the precision
of retrieval using that category may be much lower than
that obtained by directly matching an image instance, e.g.,
matching the logo likely associated with “Corn Flakes” here.

While generating descriptive nouns, attributes, and/or
phrases from an image is a topic of recent interest [30, 16, 41],
the challenge of retrieving an image or object from within a
scene using natural language has had less attention (but see
[24, 52, 51]). We frame the problem as one of content-based
image retrieval, but searching a relatively small set of potential
distractors rather than sifting through a large image corpus.
Our method is inspired in part by recent methods which
employ image-to-text projections for large-scale recognition
[55, 49, 20]. Instead of mapping an image to a set of category
labels, we map it to a sparse distribution over an open-
vocabulary text space. This allows us to predict words related
to the specific object image at the level of instances, fine-
grained categories, or categories at any level of the semantic
hierarchy, plus other words related to the object.

We propose an approach that leverages the semantics of
categories, subcategories, and instance-level semantics, com-
bining them in a common representation space defined by
word distributions (Fig. 2). Candidate images are projected
into the common space via a set of image-to-text projections.
We propose a combination scheme that ranks the candidate
images in a cascaded fashion, using projections in the order
of highest to lowest expected precision, until a confident match
is found.

Our framework incorporates a variety of category classi-
fication and instance matching methods to define image-to-
text projections. At the category level, we consider both a
conventional bank of linear SVMs on sparse coded local
features [15] and a deep convolutional model trained on
ImageNet [28], and define the projection to a text space based

on the text that defines the associated synset. At the instance
level, we use large-scale image search engines [3, 2] to index
product images and other images available on the web to
find matching web pages, and take the text from those pages.
We expand query terms using the Freebase API [1], so that
semantically related terms are included such that the chance
of a match is increased for each projection (at some cost
to precision but improving the coverage, as our experiments
reveal).

We evaluate our methods on a subset of ImageNet test
data corresponding to categories which are relatively dense
with household product objects, and on new images collected
in a robotics laboratory. We show each image to human
annotators and ask them to provide a description for a robot
to retrieve it from a room in their home. We then evaluate our
method’s ability to find the correct object in simulated scenes
of varying complexity. To the best of our knowledge, ours is
the first method proposed to fuse instance-level and category-
level semantics into a common representation to solve open-
vocabulary reference tasks. Our results show that our se-
quential cascade approach outperforms a variety of baselines,
including existing category-level classifiers or instance-level
matching alone, or a baseline formed by matching images
returned by a text-based image search as proposed in [5].

II. RELATED WORK

Object recognition and content-based image retrieval each
have a rich history and a full review of either is beyond the
scope of this summary; most relevant to this paper perhaps
is the relatively recent work on large scale categorization.
Many approaches are trained on ImageNet [15], and output
a single category label [16, 28], while others try to generate
proper natural language descriptions [18]. Recent efforts have
investigated increasingly fine-grained recognition approaches
[19, 42], predicting e.g., the specific breed of dogs, or the
model and year of a car. Instance-level recognition has a long
history in computer vision [34, 37, 43, 47], and has been
successfully deployed in industry for a variety of products
(e.g., Google Goggles).

In robotics perception it has shown very good results
in instance recognition when training from RGB-D data of
the objects of interest [50, 56]. However these approaches



generally require precise RGB-D models of the objects to be
recognized and therefore do not scale beyond a predifined
set of objects. Recent work [27] shows how to learn a
logical model of object relations to allow for object retrieval.
Therefore this paper is closely related to ours when it comes
to the application scenario. Despite the attempt of training
one-vs-all classifiers for hundreds of thousands of labels
[14], no fixed vocabulary of nouns is sufficient to handle
open-vocabulary queries, which involve arbitrary labels at all
levels of semantics, from generic to extremely fine-grained
to attribute-level. More importantly, the amount of supervised
data required for each of these constituent problems presents a
major barrier to enabling arbitrary vocabularies. Our proposal
can be seen as complementary to previous approaches to object
recognition in robotics [50, 56], in that it handles novel objects
and out-of-vocabulary labels.

Earlier work has focused on modeling co-occurrences be-
tween image regions and tags [6, 8], focusing on scenes
where the correspondence between image regions and tags
is unknown. Hwang and Grauman [25] propose to extract
features from a given ordered list of tags and use them to
estimate the size and location of an object in an image. In
contrast, we don’t assume that we have paired text and images
for training, we use them only for validation and testing.

A related line of work embeds corresponding text and image
pairs in a common space, such that both the image and the text
end up at nearby locations (Canonical Correlation Analysis,
Kernelized Canonical Correlation Analysis, etc.). The major
limitation of such embeddings is that they in general do not
include both category- and instance-level labels, and require
training images paired with text. In our case, such data is
available for some objects through search-by-image engines,
but not for all. The work of [46] proposes a general framework
for supervised embeddings; this and related efforts could be
profitably applied to enhance our representation, assuming
one could obtain a lot of images paired with text, but is not
necessary to obtain the results we report in this paper.

Caption-based retrieval methods (Kulkarni et al. [29], etc.),
map images to text captions, but focus on scenes rather than
objects and category-level rather than instance-level informa-
tion. Moreover, they rely on captioned images for training
data. Several web-scale image tagging methods consider ap-
plications to tag-to-image search, or image retrieval using text-
based queries [23, 26, 33, 35]. Most have been limited to one-
word queries and category-level tags, e.g., pool, and cannot
handle phrase queries or queries that may contain instance-
level tags, e.g., Froot Loops cereal.

Instance recognition methods try to find a set of relevant
images given a query image. For example, [22] proposed to use
category-level labels to improve instance-level image retrieval
and use a joint subspace and classifier learning to learn a
projection in a reduced space using category labels.

Another line of work within image retrival is [5, 11], where
authors try to find a set of relevant images in a dataset given

a short text query. [5] proposes using Google Image Search
to find candidate image queries and then use those to rank
the images in the dataset. However, they use a very restricted
set of queries, and a small dataset. Nonetheless, we evaluate
this method as a baseline to compare against our method, as
reported below. In [11] authors also propose to use Google
Image Search to train an object classifer on-the-fly and use it
to rank the images in the dataset. In this case authors use a
large set of distractors from ImageNet, but only evaluate their
approach on Pascal VOC 2007, where there are just 20 classes.
It is not clear if their approach could be used for thousands
of classes with open-vocabulary queries like ours.

In the video retrieval setting, several papers addressed the
problems created by using natural language in the queries [31,
38, 45, 48, 39]; more recently [13] addressed the problem of
zero-shot video retrieval using content and concepts.

III. OPEN-VOCABULARY OBJECT RETRIEVAL

We now formalize the problem of retrieving a desired object
using a natural language query. Rather than constraining the
description to a closed set of categories, a free-form text query
q ∈ Q is provided. For example, the user can search for “the
tennis ball” or “the Dove soap” in Fig. 3.

The task is to identify which of a set of candidate images
(or image regions) C = {c1, c2, . . . , ck} is the best match
for the query q. We assume each ci contains a single object.
We are therefore searching for a map fC : Q → {1, . . . , k}.
In particular, we compute a score r(q, ci) for each of the
candidate objects and choose the one with the highest value:

fC(q) = argmax
1≤i≤k

r(q, ci) .

In the case of a finite label space Q, a standard vision
baseline would regard the elements ofQ as disjoint classes and
learn classifiers for each of them. We could then choose the
candidate object with the highest classifier score. However, in
our scenario, we have unconstrained natural language queries,
where learning a classifier for each element using traditional
supervised learning is not an option, because not all query
words could be observed at training time.

Therefore, our score function is based on comparing the
given text query q with m different representations of an image
in a weighted open-vocabulary text space. In particular, we
define a set of functions Φ = {φj}, j = 1, ...,m, that project
a given image ci into a sparse vector of words, i.e. S =
{(wn, βn)|n ∈ N} with words wn being the key and corre-
sponding weights βn ∈ R being the values of the sparse vector.
We define a similar projection ψ for the given query. Each of
the proposed projections φj results in a sparse representation
based on the particular semantics that that specific function
can extract from the image. In this paper we define five image-
to-text projections, Φ = {φIQE , φGIS , φDEC , φLLC , φCAF },
where the first two are instance-level and the last three are
category-level. Fig. 3 illustrates the respective strengths of
category- and instance-based projections for several example
objects.



Fig. 3. Instance and category information are often complementary. The image on the left is overlaid with candidate image windows, computed using the
selective search method of [53]. Extracted regions are shown on the top row. Below each region is the image that was the best match found by a web-scale
instance search. Text below this matching image shows the corresponding instance-level projection; text below that (in italics) shows the category-level
projection derived from Deep Convolutional Imagenet Classifiers (DECAF) (φDEC ). In this example the instance-level projection would likely be able to
resolve 3 of 6 objects for typical user queries in this scene (ketchup, toothpaste, bar of soap), while the category-level projection could likely resolve 2 of 6
(ball, pen). The liquid soap container was missed by the selective search in this example but is reasonably likely to have been recognized as a bottle by the
DECAF models.

Once the images are projected into the weighted text space,
we compute the similarity of each projection’s weight vector
φj(ci) to the query’s weight vector ψ(q). The similarities are
combined across all projections to produce the final ranking
using a cascade Cas:

r(q, ci) = Cas(s(ψ(q), φ1(ci)), ..., s(ψ(q), φm(ci)))

where s(·, ·) is the normalized correlation (or cosine angle).
We describe each step of the algorithm below in detail.

We stress that our method is general and can accommodate
other projections, such as projections that capture attribute-
level semantics. For example, a variety of attribute projections
could be defined, including those based on color [54], basic
shapes, or based on surface markings such as text. For in-
stance, one could incorporate OCR-based projections, as they
provide a text attribute that is highly precise when it matches.

A. Category-based projections

We learned three category-based projections, φLLC , φDEC ,
φCAF , each with a different set of categories. The first one,
φLLC , uses a bank of linear SVM classifiers over pooled
local vector-quantized features learned from the 7,000 bottom
level synsets of the 10K ImageNet database [15]. The second
model, φDEC , makes use of the Deep Convolutional Network
(DCN) developed and learned by [28] (the winning entry of the
ILSVRC-2012 challenge) using the DECAF implementation
[17]. The output layer consisted of 1,000 one-vs-all logistic
classifiers, one for each of the ILSVRC-2012 object categories.
The third model, φCAF , is a new DCN for visual recognition
based on extending the DCN 1K ILSVRC-2012 of [17, 28]
to a larger DCN, by replacing the last layer with 7,000 labels
and then fine-tuning on the entire 7K Imagenet-2011 dataset. It
was implemented with the Caffe framework (improved version
of DECAF) available at http://caffe.berkeleyvision.org/.

We refer the interested reader to the corresponding publi-
cations for further details about these methods. We want to
remark that Caffe and DECAF are open source, and that we
are releasing the learned DCN models used in this work at
http://openvoc.berkeleyvision.org, which are ready to be used
by researchers working on robotics applications or on object
retrieval.

Given the classification result, a traditional category-based
approach would project an image to a vector with non-zero
elements corresponding only to the text representation of its
predicted label, e.g. can. However, only using a single label is
likely to be error prone given the difficulty of category-based
recognition. An image is therefore projected to the set of words
wn consisting of all synset synonyms, e.g. can, tin, tin can,
with weights βn corresponding to the corresponding predicted
category probability. When the query description only consists
of a single word, the resulting similarity score reduces to
the sum of the predicted probabilities for the corresponding
synsets.

More specifically, we define the LLC-10K projection as
φLLC(ci) = {(wn, p(wn|ci))} with wn being a word in a
synset’s list of synonyms and p(wn|ci) being the posterior
probability of the synsets where the word appear. A word can
appear in more than one synset, so more frequent words would
have a higher weight. To obtain the posterior probabilities for
all the 10K synsets, we learn conventional one-vs-all classifiers
on the leaf nodes, 7K in this case, obtain probability estimates
for the leaves (via Platt scaling [44]), and then sum them to
get the 3K internal node probabilities, as proposed in [16].

The DECAF-1K projection φDEC is defined similarly with
the only difference being that the posterior probabilities for the
1K nodes are given directly by the output-layer of the deep
architecture [17].

The CAFFE-7K projection φCAF is defined similarly with

http://caffe.berkeleyvision.org/
http://openvoc.berkeleyvision.org


Fig. 4. Examples images from the LAB dataset.

the only difference being that the posterior probabilities for
the leaves (7K) are given directly by the output-layer of the
new learned DCN. All category projections φLLC , φDEC ,
φCAF project an image into a weighted set of 18K words,
corresponding to all the words from the synset synonyms in
10K synsets used from WordNet.

B. Instance-based projection

The instance-based projections φIQE and φGIS used in
our approach rely on large-scale image matching databases
and algorithms which have been previously reported in the
literature and have been available as commercial services for
some time.

For φIQE , we use IQ Engines’ (IQE) fully automated
image matching API [3], which takes an image as input and
provides a text output as a result, which is directly used as
an image-to-text projection. The IQ Engines API indexes over
one million images, mostly scraped from shopping webpages,
using a local feature indexing with geometric verification
paradigm [34, 40]. Each image in the database and each given
query input image is represented by local features extracted
at interest points. The first step of the matching is then to
determine a candidate set by performing a k-nearest neighbor
search using a visual bag-of-words signature computed from
the local features. After obtaining the candidates in the product
database, local feature matching is performed together with
geometric validation and the description of the best matching
image is returned. This technique can be seen as a version of
the query expansion strategy of [12]. Given the best matched
image, the corresponding product description is returned.

The φGIS projection is similar but based on the results
of image-based queries to the Google Image Search (GIS)
service. This service tries to match a given image with similar
web images and returns a set of links in a fashion similar to
the IQ Engines API service.

Both projections φIQE and φGIS are defined using a bag
of words over the text returned by either IQ Engines or from
the webpage summaries returned by Google Image Search.
For example, for the image of the spam in Fig. 4, IQ Engines
returns the following text ”Hormel Spam, Spam Oven Roasted
Turkey”, while Google Image Search returns the best guess
“spam” and links containing text like “do you use email in
your business the can spam act establishes . . . ”.

C. Textual query expansion

The final projection ψ performs textual query expan-
sion [10, 36] to relate brand names to corresponding object
categories and also to tackle rare synonyms not present as
synsets in ImageNet. Our textual query expansion technique
is based on the large semantic concept database Freebase [9].
A given description q is parsed for noun groups using
the standard NLP tagger and parser provided by the nltk
framework1. A noun group could be, for example, the brand
name ”cap’n crunch”. For each noun group, we query the
Freebase database and substitute the non-synset noun group
w with ψ(w), if the query did return a result. The function
ψ transforms w into a different set of words by searching
for /common/topic/description entries in the Free-
base results and concatenating them. After expansion, we
can compare the projected weight vector with the weight
vector obtained with one of the image-to-text projections φj
described in the previous section. Note that more frequent
words would have higher weight, as before. For example ”tazo
chai tea” is expanded to ”Iced tea is a form of cold tea, usually
served in a glass with ice . . . popular packaged drink . . . ”
Here the italicized words are terms that are also found in the
corresponding synset descriptions of the object to which the
user was referring, thus this projection expands the query to
include category-level words.

D. Cascade for combining similarities

We combine the similarities s(ψ(q), φj(ci)) computed for
a candidate image ci with a simple set of sequential decisions,
using an optimized cascade Cas. Our cascade strategy works
as follows: we sequentially process through our j = 1, ...,m
image-to-text projections, and if the jth similarity is infor-
mative, that is, when similarity for all ci is not the same
(within a small threshold), the result is returned, otherwise
we continue with the next image-to-text projection. The order
of the cascade is optimized using a greedy strategy, where
the order of the similarity functions and the corresponding
projection methods is determined by the Precision@1-NR (see
Section IV-C). In our case, the first projection is based on
IQ Engine, φIQE , which only outputs text in cases where a
matching with a product image was successful. Zero scores of
the instance-based similarity calculation typically occur when
no matches are found by IQ-Engine or Google Image Search.
The category-based methods result in zero similarity scores
for examples where no category terms, i.e. words matching
synsets in ImageNet, are part of the given query.

IV. EXPERIMENTS

A. New open-vocabulary retrieval dataset

To quantitatively evaluate the proposed approaches, we
collected natural language descriptions of images of ob-
jects in our laboratory (“Lab”) as well as from categories
in the kitchen/household subtree of the ImageNet hierarchy
(“Kitchen”). Fig. 4 and Fig. 3 illustrate the Lab images,

1http://nltk.org/

http://nltk.org/


Method P@1-NR Coverage P@1-All

MQ-Max [5] 60.62% 52.73% 40.34%
MQ-Avg [5] 58.57% 52.73% 38.86%

IQ-Engine (IQE) 80.44% 25.30% 32.41%
Google-Image (GIS) 69.88% 51.77% 44.22%
DECAF-1k (DEC) 67.70% 66.86% 50.93%
DEC+FB (DEC+) 61.71% 78.24% 52.06%
CAFFE-7k (CAF) 59.86% 79.94% 51.03%
LLC-10k (LLC) 57.89% 79.94% 49.80%
CAF+FB (CAF+) 54.14% 88.66% 50.04%
LLC+FB (LLC+) 52.63% 88.66% 48.63%

TABLE I
COMPARISON OF PROJECTIONS ON THE VALIDATION SET OF THE KITCHEN

DATASET. P@1-NR: PRECISION@1 FOR NOT-RANDOM ANSWERS;
COVERAGE: PERCENTAGE OF COVERED QUERIES; P@1-ALL:

PRECISION@1 FOR ALL QUERIES

Lab Kitchen

Avg. number of words per description 3.34 4.70
Avg. number of nouns per description 2.19 2.73
Avg. number of adjectives per description 0.32 0.52
Avg. number of prepositions per description 0.27 0.50

TABLE II
STATISTICS OF THE DESCRIPTIONS WE OBTAINED FOR THE TWO
DATASETS: DESCRIPTIONS WERE TAGGED WITH THE STANDARD

PART-OF-SPEECH TAGGER IN NLTK

while Fig. 1 illustrates the Kitchen set. Each image was
posted on Amazon Mechanical Turk in order to collect natural
language descriptions. For each image, ten individuals were
asked to provide a free-form description of the object in
the image as though they were instructing a robot to go
through the house and locate it, e.g.“Robot, please bring me
the * fill in the blank *”. The descriptions we obtained are
fairly rich and diverse and TABLE II contains some statistics.
There are 183 images annotated in the Lab set and 606 images
annotated in the Kitchen set, additionally there are 74240
images that serve as distractors. Given that for each annotated
image there are 10 annotations, for our evaluations we used
over 60K combinations of targets, annotations and distractors.

To support the detailed evaluation below, each query pro-
vided was additionally labeled by a second annotator as to
whether it appeared to be an “instance” or a “category”-
level query. These were selected on the basis of the textual
description without looking at the image they were given for.
The category- and instance-level labels were applied when a
query had a brand-name or fine-grained description or had a
clear category term directly related to the synset, respectively.
The other queries remained unlabeled. The dataset will be
made publicly available.

We created a series of synthetic trials to simulate the
scenario shown in Fig. 3. We sample a query image from
the Lab or Kitchen sets and a number of distractors from the
same set or from all of ImageNet (“ImageNet”), the latter
being a considerably easier task. The descriptions associated

Method Lab Kitchen ImageNet

MQ-Max [5] 35.26% 40.34% 43.43%
MQ-Avg [5] 33.40% 38.86% 41.42%

IQ-Engine (IQE) 48.59% 32.85% 24.46%
Google-Image (GIS) 48.30% 44.45% 39.19%
DECAF-1K (DEC) 43.36% 50.73% 53.13%
DEC+FB (DEC+) 42.19% 52.13% 54.05%
CAFFE-7K (CAF) 44.70% 51.34% 57.50%
CAF+FB (CAF+) 42.19% 50.04% 56.82%
LLC-10K (LLC) 40.05% 49.57% 57.24%
LLC+FB (LLC+) 37.85% 41.25% 56.27%

Linear-SVM (LSVM) 45.75% 58.90% 63.65%
Rank-SVM (RSVM) 56.40% 62.49% 72.62%
Max-Kernel (MAX) 49.51% 61.11% 68.49%

IQE,GIS 56.37% 51.86% 58.86%
IQE,GIS,DEC 64.09% 60.95% 75.04%
IQE,GIS,DEC,CAF 66.45% 64.15% 80.13%
IQE,GIS,DEC,CAF,LLC 66.76% 65.10% 81.50%
Full Cascade (CAS) 67.07% 66.20% 81.93%

TABLE III
PRECISION@1-ALL THE QUERIES FOR THE THREE EXPERIMENTS AND

FOR ALL THE METHODS.

Method Category Instance Unlabeled

MQ-Max [5] 27.65% 51.61% 36.52%
MQ-Avg [5] 26.09% 49.18% 31.96%

IQ-Engine (IQE) 40.41% 67.18% 52.93%
Google-Image (GIS) 40.46% 66.69% 53.95%
DECAF-1K (DEC) 48.15% 25.42% 48.38%
CAFFE-7K (CAF) 48.80% 30.79% 44.20%
LLC-10K (LLC) 44.00% 25.92% 42.94%

Linear-SVM (LSVM) 47.67% 39.13% 43.17%
Rank-SVM (RSVM) 54.33% 69.73% 58.76%
Max-Kernel (MAX) 50.08% 49.10% 52.63%

Full Cascade (CAS) 62.92% 76.58% 65.95%

TABLE IV
DETAILED ANALYSIS OF PRECISION@1 FOR THE LAB EXPERIMENT BY
TYPE OF QUERY. AMONG THE 1830 QUERIES, 53% WERE LABELED AS

CATEGORY, 18% WERE LABELED AS INSTANCE AND THE REST REMAINED
UNLABELED

with the query image serve as the object retrieval query. For
each pair of target image and textual description, we sample
10 image distractors from different synsets, obtaining 6060
trials comprised of 11 images (one is the target) and one text
description.

B. Baselines

We evaluate the three categorical methods DECAF-1K
(DEC), CAFFE-7K (CAF), and LLC-10K (LLC) from Sec-
tion III-A, the two instance-based methods IQ-Engine (IQE)
and Google-Image-Search (GIS) from Section III-B, and
their combinations using Linear-SVM (LSVM), Rank-SVM
(RSVM), Max-Kernel (MAX) and Cascade (Cas) as given
in Section III-D. The inputs to the SVMs are the scores
from each of the projections, and they are trained to choose



the target object over the distractors. For instance to train
the Linear-SVM we labeled the targets as positive and the
distractors as negatives, while to train the Rank-SVM we
imposed the constraints that the targets should be ranked above
all the distractors. The output of the trained models is a global
score computed as a weighted combination of the individual
projections. Furthermore, we also show that our Freebase
query expansion proposed in Section III-C helps to improve
the overall accuracy.

We also compare all methods with the best Multi-Query
approach of [5], where a given query description is given to
Google image search (not to be confused with the search-
by-image service GIS we are using) and the similarity of
the images with the candidate images is estimated with a
visual bag-of-words pipeline. We refer to the resulting methods
as Multiple Queries Max (MQ-Max) and Multiple Queries
Average (MQ-Avg) depending on the pooling performed.

C. Experimental setup

To analyze the methods in detail, we have defined the fol-
lowing performance measures: (1) Coverage is the percentage
of trials in which the method given the text query and the
images is able to give an informative answer, that is, the cases
in which it produces different values for the candidates, and
therefore the target selection is not random. (2) Precision@1-
NR (Not-Random) is the precision of the 1-st ranked image,
computed only on the trials described in (1), i.e. where the
method is able to deterministically select the target object. (3)
Precision@1-All measures Precision@1 for all cases including
cases where the method guesses the target randomly since it
cannot determine which one is the target.

To learn the parameters of the combined methods Linear-
SVM (LSVM), Rank-SVM (RSVM) we used a small valida-
tion set comprised of 100 target images with their correspond-
ing textual descriptions and distractors. To establish the order
for the sequential Cascade method, we order the individual
methods by their Precision@1-NR on the validation set from
the highest to the lowest (TABLE I).

D. Comparing individual projection methods

First, we analyze each image-to-text projection in isolation.
The results are given in TABLE I for the Kitchen dataset,
i.e. kitchen domain images from ImageNet used for the target
as well as distractor images.

The method with the highest Precision@1-NR value but
lowest coverage is IQ-Engine (IQE), which means that the
method is very precise when a match is found but also likely
not to return anything (zero similarity values to the candidate
images). The methods with the highest coverage are LLC-
10k (LLC) which has the lowest precision, and CAFFE-7K
(CAF) which has a slightly higher precision, meaning that
these method are likely able to allow for proper candidate
selection, but are not as precise as IQE.

We can also see that the Freebase query expansion technique
we proposed in Section III-C mainly increases the coverage
but reduces the precision, which is an intuitive result because

the number of keywords in a query increases significantly due
to expansion.

E. Combining image-to-text projections
The main results of our object retrieval experiments are

given in TABLE III for our lab images and the kitchen
domain images from ImageNet with distractor images from
the same domain or random ones sampled from other synsets
of ImageNet not necessarily related to the kitchen domain.

The best individual method depends on the experiment; for
instance in the Lab experiment, the best is IQ-Engine (IQE)
with P@1-All 48.59%, in the Kitchen experiment, the best
one is DECAF-1K+Freebase (DEC+) with P@1-All 52.13%,
and in the ImageNet experiment, the best one is CAFFE-7K
(CAF+) with P@1-All 57.50%.

However, the best combined method is consistently the Full
Cascade (CAS), with P@1-All 67.07% for Lab, with P@1-All
66.20% for Kitchen and with P@1-All 81.93% for ImageNet.
The Full Cascade includes the Freebase query expansion,and
obtains a substantial performance gain in all the experiments.

The best individual method varies across all three datasets,
but we are able to outperform the method of [5] in all
cases. More importantly, we are able to combine all similarity
and projection methods with our cascade combination, which
outperforms all individual methods and other combinations. In
particular the last rows of TABLE III show how each method
when added to to the sequence it improves the performance.

F. Which method is helping for which type of query?
As can be seen in Fig. 3, and in the results of the combined

methods show in TABLE III, the category and instance-level
methods benefit from each other in the combination and can
be thus considered as orthogonal concepts. A further proof
for this fact can be seen in detail when looking on the results
for queries labeled as category or instance-level queries in the
dataset, which are given in TABLE IV.

The instance-level projections IQE and GIS show a higher
Precision@1-All on the instance queries than the category-
based projections DECAF-1K, CAFFE-7K and LLC-10K and
vice versa for the category queries. Among the category-
based projections, CAFFE-7K has the highest Precision@1-
All on the category and instance queries, showing the better
capabilities of the new trained DCN to handle fine-grained
object recognition.

G. Runtime discussion
For robotics applications, where runtime is an important

issue when making predictions, we suggest to use CAFFE-
7K as a category-based projection, since it offers very fast
prediction with around 2s per 256 test images, including 1.5s
to read and preprocess them (using 4 cores) and 0.5s to run
the DCN in Caffe (using a Titan GPU, 6s in CPU mode).
The additional runtime for GIS, IQE and the Freebase query
expansion depends on the speed of the proprietary web service,
but was in the order of a few seconds in our experiments.
Furthermore, our approach offers easy parallelization by dis-
tributing the different modules on several machines. Taking



into account that in total we are dealing with a recognition
system learned with several million images and thousands of
categories, this is a remarkable runtime and a great opportunity
for improving robotics applications that need to deal with
everyday-life objects.

V. CONCLUSIONS AND FUTURE WORK

We have proposed an architecture for open-vocabulary ob-
ject retrieval based on image-to-text projections from compo-
nents across varying semantic levels. We have shown empiri-
cally that a combined approach which fuses category-level and
instance-level projections outperforms existing baselines and
either projection alone on user queries which refer to one of
a number of objects of interest.

Key aspects of our method include that: 1) images are
matched not simply to a pre-defined class label space but
retrieved using a multi-word descriptive phrase; 2) query ex-
pansion for unusual terms improves performance; 3) instance
matching can improve category-level retrieval and vice-versa.

Our framework is general and can be expanded to include
other projections defined on attributes based on color, text
cues, and other modalities that are salient for a domain. In our
opinion, our approach is extremely useful for robotics applica-
tions, because we are the first ones to combine several of the
most powerful visual recognition techniques available today:
deep neural networks trained on ImageNet and large-scale
image matching. Our framework is just the beginning of an
open source project in open-vocabulary object retrieval and we
will provide source code and pre-trained models ready to use
for robotics applications at http://openvoc.berkeleyvision.org.
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