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Abstract. We present a new approach for contextual semantic segmen-
tation and introduce a new tree-based framework, which combines local
information and context knowledge in a single model. The method itself
is also suitable for anytime classification scenarios, where the challenge
is to estimate a label for each pixel in an image while allowing an in-
terruption of the estimation at any time. This offers the application of
the introduced method in time-critical tasks, like automotive applica-
tions, with limited computational resources unknown in advance. Label
estimation is done in an iterative manner and includes spatial context
right from the beginning. Our approach is evaluated in extensive ex-
periments showing its state-of-the-art performance on challenging street
scene datasets with anytime classification abilities.

1 Introduction

Semantic labeling or classification is an important task for localizing objects
or to perform scene understanding. In a large set of applications, such as road
detection [3], street scene analysis [10], and robotics [11], one is often faced
with constraints on classification time. Even more severe, those constraints are
sometimes a priori unknown and depend on external conditions. For example, the
time in which we require road and lane detection depends on the current speed of
the car. Machine learning methods that allow for tackling these requirements by
providing outputs at different time steps are referred to as anytime classification
approaches [5]. The main idea is that output quality increases if more time is
provided, while proper results are also available after a short initialization time.

In our paper, we present an anytime semantic segmentation approach, which
is able to use contextual cues immediately after the first iteration. The approach
is built on a technique, which we call Iterative Context Forests (ICF) (Fig. 1). It
performs efficient semantic segmentation without explicit need for inference with
conditional random field models and without time consuming feature extraction
or post-processing steps. Instead of subsequently traversing a decision tree for
each pixel until a leaf node is reached, we walk through a tree in a level-based
manner for each pixel jointly.

Related work on anytime classification Anytime classification has been
mostly considered for standard machine learning and data mining tasks instead



2 Björn Fröhlich and Erik Rodner and Joachim Denzler

apply classifier and
calculate probability maps

add context features to the
feature set

find the best split in each node
of the current level

probability map 

it
e
ra

ti
v
e
ly

 a
d

d
in

g
 l
e
v
e
ls

 t
o
 t

h
e
 f

o
re

stiterative 
context trees

Fig. 1: Learning an Iterative Context Forest: we learn a random decision forest
level by level and integrate context cues by always computing features using the
previously estimated probability maps. This generates a series of classifiers fk,
which can be used for anytime classification

of semantic segmentation and visual recognition. In [5], a decision tree classifier
is presented, which is able to perform anytime classification and learning. Their
paper also gives an introduction into the topic and discriminates between in-
terruptible and contract anytime classifiers. In contrast to interruptible anytime
classifiers, which are considered in our paper, contract classifiers are provided
with time and memory requirements in advance. The work of [12] considers
anytime classification for density estimation. The main idea is to incrementally
refine the density estimate by traversing a tree, in which inner nodes store a
rough Gaussian approximation of the density and each leaf node is related to
a Parzen density estimator. Anytime classification with SVM is studied by [4]
using geometric considerations. The authors of [13] use an anytime nearest neigh-
bor classifier and propose methods for scheduling multiple object classification
similar to [8]. In contrast to those works, we study anytime classification for
visual recognition and show how to perform joint classification of pixels, which
incorporates contextual knowledge.

Related work on context modeling We incorporate context knowledge by
using the output of previous levels of a decision tree classifier as features for a
new one. This strategy is similar to the one used by [6] for their mutual boosting
approach. They train a set of object detectors simultaneously. In each round of
the Boosting method, they add features derived from the results of the current
classifier. Our work is also related to the approach of [14], where a two stage
segmentation technique is proposed. Their idea is to first train a random forest
using basic local features and then to train a second random forest using context
features calculated using the first forest. In contrast, we learn a single random
forest and incrementally add context features derived from coarser levels. This is
essential to allow for anytime classification, since the procedure can be stopped
at any time and still provides a proper result.

Outline We first give an informal definition of anytime classification and its
requirements in Sect. 2. This is followed by describing our approach in Sect. 3.
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Experiments in Sect. 4 evaluate our method on street scene analysis tasks and
show their advantages as well as anytime properties. A summary of our findings
and a discussion of future research directions conclude the paper.

2 Anytime Classification

The goal of standard machine learning methods is to estimate the latent rela-
tionship between inputs (feature vectors) and labels from available training data.
In most cases, this can be expressed with a function f : X → Y mapping from
the space X of all inputs to a defined label space Y, such as Y ∈ {1, . . . ,M} for
multi-class classification.

Anytime classification involves some time requirements posed during clas-
sification, i.e., the evaluation of the function f . At several time steps tk, we
would like to have a result fk(x∗) for a test example x∗. Thus, we have a series
F = (fk)

∞
k=1 of functions at certain time steps (tk)∞k=1. Allowing the system to

spend more time during classification, the classification result should be more
accurate. In contrast to state estimation in dynamic systems, anytime classifica-
tion in our case considers the input to be static without any change over time.
Thus, we do not get any additional sensor information during classification. The
main requirements of anytime classification are given as follows:

1. Decreasing error rate: The excepted error ε of the decision functions in
F should be monotonically decreasing, i.e., ε(fk) ≥ ε(fk′) for tk < tk′ .

2. Flexibility: The time differences 4k = tk+1 − tk should be small to allow
for high flexibility during classification.

3. Direct availability: The classification result is directly available in time
step tk and there is no additional time-consuming post-processing required
after interrupting the algorithm.

To learn anytime classifiers, it is beneficial to build the series F of classifiers in
an iterative manner, i.e., fk+1 is an extension and adaptation of fk.

For evaluation of anytime classification systems, time/error curves defined
by (tk, ε(fk))∞k=1 are an essential tool. The limit of this curve gives us the perfor-
mance of the classifier disregarding any time constraints. However, in anytime
classification scenarios the rate in which the error decreases during the first time
steps is often more important than the limit. In the following sections, we show
how to develop an anytime classification system using random decision forests,
which matches the requirements stated above.

3 Iterative Context Forests (ICF)

Due to the high amount of ambiguities present in recognition tasks, incorporating
context knowledge is necessary. A common approach is to utilize a CRF model
to combine independent local decisions with global or relative location context.
However, those techniques require a large amount of the available classification
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time, since they perform optimization with a large number of variables. Iterative
Context Forests (ICF) allows for incorporating context knowledge directly during
learning of the RDF without CRF modeling. The idea is to train a classifier
fk+1 for the next time step, i.e., the new level of the random forest, by using the
output of the previous classifier fk to compute additional features introduced in
Section 3.3.

3.1 Random Decision Forest

A random decision forest (RDF) is an extension of the well known decision trees.
The main disadvantage of decision trees without pruning is the high risk of over-
fitting, which [1] try to prevent by different kinds of randomization. RDFs use
multiple decision trees in which each tree is trained with a different random
subset of the training data. Furthermore, in an inner node of a tree, only a
random subset S with τ features is used to find the best binary split of the
training data, which is done by maximizing the information gain. A huge benefit
of this idea is that not all available features have to be computed in each inner
node.

Typically each new example traverses the tree and is classified by using
the empirical distribution in the reached leaf node. In contrast, we propose a
breadth-first method for classification which enables anytime classification. All
new examples traverse the tree jointly in a level-wise manner. In each node, the
empirical class distribution estimated during learning can be used as a rough
classification result. This offers the possibility to obtain a classification result
for all examples at different levels k and time steps tk. The accuracy depends
on the current level reached in the tree and care has to be taken to prevent
over-fitting. In our case, over-fitting due to an increasing model complexity is
reduced by utilizing the randomization techniques of an RDF classifier. Given
multiple trees, all trees are traversed level-wise in a parallel manner. The series of
classifiers fk, as defined in Sect. 2, is thus the learned random forest reduced to
a maximum depth of k. Another idea to extend random decision forests towards
anytime capability is to traverse one tree after another. However, our approach
is more flexible and allows contextual information.

3.2 Color Features

An important requirement for the features is a fast extraction. Therefore, we
use basically the same operations as in [14] as an initial feature set with minor
modifications:

1. pixel pair features: the output of simple operations A, A − B, |A − B|,
A + B, with randomly selected pixels A and B in the neighborhood of the
current position (Fig. 2a).

2. Haar like features [15]: horizontal, vertical, and diagonal differences (Fig. 2b)
3. further rectangular area features using integral images to compute the

mean values in these area (Fig. 2c-2e)
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Fig. 2: Features used in our approach for both context and color cues similar to
[14]. A window of size d is surrounding the current pixel position (blue pixel).
Depending on the type of a feature one or two pixels (a) or one (c and d) or two
areas (b and e) are randomly selected. Every parameter is selected randomly
(the size of an area, the position of the area etc.) under some constraints, e.g.,
for image (d) the rectangle is centered. For features utilizing areas, the mean
values of the areas is used.

Fig. 3: An exemplary scenario: Some windows are wrongly classified as door in
iteration fk. Using the probability map for class building with the rectangle
features (see Fig.2c) shown in the third image the wrongly classified windows
will be classified correctly in iteration fk+1

4. relative position in the image (normalized coordinates)

This leads to a large number of possible features computed on RGB or CIELAB
color channels. Due to the reason, that only some features are randomly selected
as potential split features for a node during training, those feature do not have
to be computed in advance. Therefore, we only have to compute a small set of
features instead of full feature representation as used in [7].

3.3 Iteratively Extending the Feature Set with Context Features

A standard RDF uses a fixed feature set S during the whole training process. But
how is it possible to model important context cues like “window is surrounded
by building” and “car stands on road or pavement”? The basic idea of the ICF
is to adapt the feature set S during training. For classifying a local image patch,
an important context cue is the relative position of other objects. This can be
modeled by using the probability for specific classes in an image region with a
learned offset (compare Fig. 2c). If we know the probability of each class and
each pixel we can utilize the same features used before for the raw image data
calculated with these so called probability maps.
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This is a typical chicken-egg problem, since an already learned classification
model is required. In our case we can use the output of the previous iteration as
a rough estimate of the probabilities which automatically improves over time.
In the first iteration k = 1, S includes only simple features, e.g., RGB color
features as introduced in Sect. 3.2. However, in iteration k > 1 the pixel-wise
probabilities for each training image estimated by fk−1 can be considered to
obtain a rough estimate of the position and alignment of other classes. To give a
simple example, in the first level of the forest each tree makes a decision based
only on the color features. With this the image is very roughly separated in at
least two main classes, e.g., “road” and “building”. For the next level of the
forest we use these rough segmentation as context features. For example, if we
want to decide whether the red area is a roof of a building or a car, it might
be important if there are some pixel below that area already labeled as building
or not. Therefore, we use those pixel-wise probabilities from the previous step
to compute semantic context features, which are added to S. In contrast to
Shotton [14], we model contextual information with only a single forest, which
allows for anytime classification. The training step of an ICF is illustrated in
Fig. 1 and an example how context is modeled is shown in Fig. 3.

3.4 Anytime Capability

In Sect. 2, we defined the requirements for anytime classification. Now we show
that all of the three points are practically valid for our ICF method. The compu-
tational effort for each step is very low, since only one simple decision stump has
to be evaluated for each pixel and tree in each level. Consequently, our method is
very flexible and allows for decisions in equidistant time steps. Furthermore, we
do not need any post-processing steps like an unsupervised segmentation used
in previous work [2, 7, 16, 17]. The final labeling is done by assigning the class
with the highest probability to each pixel. In our experiments, we show empir-
ically that the first property of decreasing error rates is also satisfied. This is
mainly due to the incorporated randomization during learning, which reduces
overfitting effects normally appearing when increasing the model complexity of
a classifier [1]. However, we are not able to provide a theoretical proof since the
characteristics of the test data are not known in advance.

4 Experiments

In the following, we evaluate our method on some datasets related to facade
recognition and street scene analysis.

Settings For feature extraction, we use a window with a size of d = 50 pixels.
The random forest contains five trees with a maximum depth of 15 levels and
a random subset of τ = 400 features is used in each node during learning.
Computational times are evaluated on a computer with 2.8GHz and four cores.
We differentiate between the average recognition rate over all classes and pixel-
wise accuracy, which we refer to as overall recognition rate.
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Table 1: Recognition rates of our experiments with different classifiers (our
approach with (ICF ) and without context features (ICFwoC )) in comparison
to previous work (Random Decision Forest (RDF), Sparse Logistic Regression
(SLR), Conditional Random Field (CRF) and Hierarchical Conditional Random
Field (HCRF)). In contrast to [7], we used random splits of training and testing
for the eTRIMS dataset to allow for fair comparison with [16, 17]

dataset approach average recognition rate overall recognition rate

eTRIMS CRF [17] 49.75% 65.80%
HCRF [16] 61.63% 69.00%
RDF [7] 62.81% (±1.58) 64.00% (±3.28)
SLR [7] 65.57% (±2.47) 71.18% (±2.69)
ICFwoC 64.07% (±1.72) 61.11% (±1.59)
ICF 68.61% (±1.71) 70.81% (±1.32)

LabelMeF RDF [7] 44.08% (±0.45) 49.06% (±0.52)
SLR [7] 42.81% (±0.89) 48.46% (±1.58)
ICF 49.39% (±0.48) 60.68% (±0.72)

Facade recognition For our experiments, we use the eTRIMS dataset origi-
nally introduced by Korč and Förstner [9]. We use ten different random splits of
the data into 40 images for training and 20 images for testing similar to [16, 17].
Furthermore, the LabelMeFacade dataset introduced in [7], which contains 100
images for training and 845 images for testing, is used as a second dataset being
more challenging. Both datasets consists of the eight classes as shown in Fig. 4
and an additional background class named “unlabeled”. For trivial decision rules
or random guessing the average recognition rate for both datasets is 12.5% and
the overall recognition rate is less than 35% (all pixels labeled as building). The
results of our method in comparison to other state-of-the-art methods are shown
in Table 1. On the eTRIMS dataset, our proposed approach significantly out-
perform all other methods with respect to average recognition rates. The overall
recognition is as good as those of the SLR method introduced in [2, 7]. However,
the benefits of our approach are more prominent for the challenging LabelMeFa-
cade dataset. ICF outperforms all previous approaches clearly on this dataset.
Some sample results are presented in Fig. 4. Please note that rounded corners
are somehow characteristic for our approach due to the reason that we do not
use an unsupervised segmentation and the usage of rectangle features smooths
the result. Furthermore we do not need a time consuming feature extraction step
as in all other methods, we are significantly faster. ICF needs ∼ 3s for testing
compared to ∼ 30s for RDF with SIFT feature extraction and unsupervised
segmentation, which achieved the fastest classification speed in the evaluation of
[7]. Please note that these times include I/O operations. There are also ways to
further speed-up our method. The classification step can be highly parallelized
using a CUDA implementation. Furthermore, we could apply our method in a
coarse to fine manner using image pyramids. The results for anytime classifica-
tion for eTRIMS are shown in the left image of Fig. 6 and one sample result for
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original ground-truth RDF SLR ICF

building car door pavement road sky vegetation window unlabeled

Fig. 4: Example images from eTRIMS (first two rows) and LabelMeFacade
database (last two rows). The corresponding results obtained by random deci-
sion forest (RDF) [7], sparse logistic regression (SLR) [7], and Iterative Context
Forests (ICF) are shown on the right side

Fig. 5: Sample result for anytime semantic segmentation, input image, ground-
truth and segmentation results for 12 time steps
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Fig. 6: Recognition performance for different time steps corresponding to the
characteristically time/error curve of anytime classifiers for eTRIMS (left) and
Leuven street scenes (right). Computational times include I/O operations
different iterations is presented in Fig. 5. It is obvious that the quality of the
result increases with the number of iterations and consequently with time.

Street scenes for autonomous cars Additionally, we performed experiments
on the Leuven street scene database introduced in [10]. This dataset represents
a scenario which highly benefits from anytime applications. In the dataset, a
car is steered through an urban area. For an autonomous car, it is important to
know the exact position of the road and the location of objects and obstacles
(like walls or persons). In contrast to [10], we do not use depth information
extracted from the stereo images provided in the dataset. Furthermore, neither
time context from previous images nor additional adaptations of the settings
for this scenario are done. However, our method achieves an overall accuracy of
89.55%. The CRF approach of [10] resulted in 95.7% correctly labeled pixels.
The benefit of our method is its speed (1.74s for each image on average) and the
ability for interruption. Stopping in a prior iteration speeds up the algorithm
and results in near real time capabilities (compare right Fig. 6).

5 Conclusion and Further Work

In this work, we presented a new approach for anytime semantic segmentation,
which can be applied in time-critical applications with unknown resource lim-
its. We defined the requirements in those scenarios and showed how to perform
semantic segmentation by traversing random decision trees in a level-based man-
ner. This allows for an interruptibility of the algorithm and for including context
features iteratively. Context cues are integrated right from the beginning of the
algorithm and meaningful classification results are available already after a short
time. Evaluation was done on multiple datasets for facade recognition and street
scene analysis. For very difficult tasks, our method achieved a superior perfor-
mance compared to previous approaches in this area and with less computational
effort. Furthermore, we have shown that our approach can be used for anytime
semantic segmentation with results at several time steps in less than a second.
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For future work, we plan to add complex shape features and higher-order
context cues. In general, we expect that there is a large set of features bene-
fiting from previously estimated probability maps. An additional cue might be
the uncertainty of the probability maps calculated using the empirical entropy.
Context features in regions of high uncertainty are unlikely to be a robust cue
and their use should be limited during learning. Furthermore, we want to inte-
grate unsupervised segmentation techniques to align the resulting segmentation
to edges and object boundaries.
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