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Abstract. In this paper, we investigate how to predict attributes of
chimpanzees such as identity, age, age group, and gender. We build on
convolutional neural networks, which lead to significantly superior re-
sults compared with previous state-of-the-art on hand-crafted recogni-
tion pipelines. In addition, we show how to further increase discrimi-
nation abilities of CNN activations by the Log-Euclidean framework on
top of bilinear pooling. We finally introduce two curated datasets con-
sisting of chimpanzee faces with detailed meta-information to stimulate
further research. Our results can serve as the foundation for automated
large-scale animal monitoring and analysis.

1 Introduction

In 2009, a detailed report came to the conclusion that the global biodiversity
is severely threatened [31]. While the report is admiringly detailed, the assess-
ment only represents the snapshot of a single date. However, dense information
regarding the development of biodiversity over time would be highly valuable,
e.g., for assessing whether new political actions are required or whether previous
ones have been successful. A major difficulty is the necessity of analyzing large
amounts of recorded data, which often needs to be done manually. Hence, reli-
able quantitative insights into the status of eco systems and animal populations
are difficult to obtain and expensive. In direct consequence, keeping biodiversity
assessments up-to-date is rarely possible although highly needed.

While analyzing large amounts of data manually is not feasible, recording
such large datasets is easily possible, e.g., using camera traps [23,21]. Hence,
the gap between data recording and data analysis can only be closed using reli-
able automated techniques. Fortunately, computer vision researchers developed
a multitude of algorithms for these scenarios over the past years. Techniques of
fine-grained recognition allow for visually discriminating among highly similar
object categories, e.g., among different birds [25], sharks [13] or flowers [15].

http://link.springer.com/
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Dorien − 32.7y − Adult − Female

Bangolo − 1.3y − Infant − Male

Kofi − 5.3y − Infant − Male

Robert − 30.5y − Adult − Male
Corrie − 33.5y − Adult − Female

Fig. 1: We investigate attribute predictions for chimpanzees based on cropped
faces. Results have been obtained using ground truth head regions and learned
attribute predictions. Left: expert annotations are (Dorien-30y-Adult-Female), (Kofi-

5y-Infant-Male), and (Bangolo-1y-Infant-Male). Right: expert annotations are (Robert-35y-

Adult-Male) and (Corrie-34y-Adult-Female).

In consequence, we are in the perfect position for transferring our solutions to
biologists to amplify their research.

Our first contribution is to provide such a transfer into the area of mammal
investigation. More precisely, we provide an in-depth study of how to apply
deep neural networks to scenarios where chimpanzees need to be analyzed. Our
analysis reveals that activations of deep neural networks substantially improve
recognition accuracy over established pipelines for chimpanzee identification.
Moreover, they are highly useful for additional attribute prediction which allows
for detailed analysis and large-scale animal monitoring. A result of our learned
attribute prediction models is shown in Fig. 1.

In addition, we present how the matrix logarithm transformation can further
increase discrimination abilities even on top of state-of-the-art bilinear pooling in
convolutional neural networks [17]. Our technique is inspired by [30,4], where au-
thors demonstrated its advances when using handcrafted features. The benefit in
terms of recognition performance can not only be seen in our real-world applica-
tion but also in a straightforward synthetic experiment that reveals the benefits
of this transformation especially for fine-grained scenarios. As noise signals in
low-quality images are thereby amplified as well, we found that the operation is
especially helpful if the image data is of high quality.

The focus of this paper can be summarized as follows:

1. We show that deep-learned image representations significantly outperform
the current state-of-the-art pipeline for chimpanzee identification,

2. We apply the logm-operation as post-processing on top of bilinear pooling
of CNN activations and present an in-depth study of the resulting benefits,
and

3. We release curated versions of the datasets presented in [19] of cropped
chimpanzee faces with detailed meta information for public use.

We review related work (Section 2) and convolutional neural networks (Section 3)
before introducing the matrix logarithm transform in detail (Section 4).
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2 Related Work

Fine-grained Recognition Over the past decade, fine-grained recognition
received increasing attention within the computer vision community due to the
challenging nature of the task [3,9,8,34,25]. In contrast to classification of coarse
object categories, fine-grained recognition needs to identify localized patterns,
e.g., striped wings or a dotted neck. A recent technique is bilinear pooling on
top of CNN activations proposed by Lin et al. [17]. Furthermore, Tuzel et al. [30]
and later on Carreira et al. [4] proposed the logm operation as post-processing
of bilinear pooled handcrafted features. We combine both ideas to tackle the
task of differentiating among individuals of a single species which is related to
but still different from fine-grained recognition.

Identification of Human Faces Eigenfaces, one of the earliest and per-
haps the most famous approach for face recognition, was presented by Turk and
Pentland and is based on PCA projections of cropped face images [29]. He et
al. presented Laplacianfaces, which rely on a more sophisticated projection [11].
Later on, Wright et al. reported benefits for face recognition using sparse repre-
sentation models [32]. Following that line of work, Yang and Zhang improved the
efficiency of sparse representation by using responses of Gabor-filters as repre-
sentations [33]. Simonyan et al. transferred the idea of Fisher vector encoding to
face recognition [26]. However, all of these methods rely on hand-crafted image
representations which need to be optimized independently.

Recently, deep neural networks trained with millions of face images signifi-
cantly improved the recognition accuracy for human faces by directly learning
appropriate representations and metrics from data. One of the first networks was
Deepface by Taigman et al. trained from 4M face images [27]. Even more power-
ful is the VGG-faces network by Parkhi et al. [22] trained from 2.6M face images.
Hence, our first contribution is to adapt these models to the task of chimpanzee
identification. A major difference is the comparatively small amount of training
data in our application domain.

Identification of Chimpanzees To the best of our knowledge, Loos et al.
[18,19] presented the only published pipeline so far for the identification of chim-
panzees Inspired by results from human face recognition, a central part is the
alignment of faces to guarantee that extracted visual descriptors are semanti-
cally comparable. To this end, an affine transformation is applied using facial
features such as eyes and mouth and the resulting image is cropped and scaled
to standard size. Aligned faces are fed into a three step pipeline which consists
of feature extraction, feature space transformation, and classification. For image
description, extended local ternary patterns [28] are extracted on spatially di-
vided Gabor magnitude pictures (GMPs). Finally, the dimensionality is reduced
using locality preserving projections [10] and a sparse representation classifica-
tion [33] serves as classification model. Due to the implemented alignment step,
the entire pipeline is restricted to near-frontal face recordings. In this work, we
show how to improve accuracy by using learned image representations without
the necessity of aligned face images.
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3 Convolutional Neural Networks in a Nutshell

Deep (convolutional) neural networks: Computer vision systems of the last
decades were commonly well-designed pipelines consisting of feature extraction,
post-processing, and classification. Since all stages were developed and specified
separately, this plug-and-play principle allowed for easily exchanging individual
modules. In contrast, recent architectures are designed end-to-end without a
clear separation of feature extraction and classification which allows for jointly
optimizing all involved parameters. An example are deep neural networks which
are concatenations of several processing stages fi, i = 1, . . . , L that are tightly
connected. These stages are referred to as layers and are parameterized with θi:

f(xi;θ) = fL (. . . (f2 (f1 (xi;θ1) ;θ2) . . .) ;θL) . (1)

When operating on image data, location invariance of learnable patterns should
be explicitly incorporated into the network layout as done in Convolutional Neu-
ral Networks (CNNs) [16]. In consequence, some layers are evaluated as convo-
lutions between learnable filter masks and outputs of the previous layer.

Optimization: Based on collected training data D = (xi, yi)
N
i=1, parameter

values of all layers can be estimated by jointly optimizing a single loss function:

L̄(θ;D) =
1

N

N∑
i=1

L(f(xi;θ), yi) + ω(θ) . (2)

where ω (·) servers as regularizer [35]. The resulting optimization problem is
usually hard and the most commonly used optimization technique is stochastic
gradient descent (SGD) [2] with mini-batches [20]:

θt+1 = θt − γ · ∇̃θL̄(θt;Stsgd) . (3)

SGD is an iterative technique where the parameter γ controls the impact of indi-
vidual steps. Furthermore, the term ∇̃θL̄(θt;Stsgd) represents the approximated

gradient of the loss function with respect to the current estimate θt and the
currently drawn mini-batch Stsgd:

∇̃θL̄(θ;Stsgd) =
1∣∣∣Stsgd

∣∣∣
∑

i∈St
sgd

∇θL(f(xi;θ), yi) +∇θω (θ) . (4)

Gradients of intermediate layers can be computed using backpropagation [24].

Fine-tuning Training millions of parameters is an ill-posed problem if labeled
data is rare. Fortunately, large labeled datasets exist in other application do-
mains (e.g., ImageNet [6]). The process of fine-tuning refers to using the pre-
trained network weights as initialization for a novel task. Running only a limited
number of optimization steps on the small data set is sufficient in practice.
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4 Log-Euclidean Convolutional Neural Networks

One of the current state-of-the-art approaches on fine-grained recognition by Lin
et al. [17] uses bilinear pooling to transform the outputs of convolutional layers
in a CNN. Bilinear pooling has been developed by Tuzel et al. [30] and Carreira
et al. [4] and computes second-order statistics of features within a spatial region.
We briefly review this approach and present how the matrix logarithm on top
of CNN bilinear pooling can further increase discrimination abilities.

Second-order Statistics Given the output tensor gi,j,k of a CNN layer with
1 ≤ k ≤ K filters, the second-order transformation is computed as pooling result
over outer products of channel responses for every spatial field:

M =
∑
i,j

gi,j,· g
T
i,j,· . (5)

Here, the suffix · denotes the vectorization of the respective component. We
specified the pooling operation over spatial responses in Eq. (5) as sum-pooling,
however, other pooling operations are equally possible [4].

Matrix Logarithm of Second-order Statistics The matrix M is an arbi-
trary symmetric positive semi-definite (PSD) matrix and therefore embedded on
a Riemannian manifold but not in a (Euclidean) vector space. This implies that
a function that separates the manifold into two regions (binary classification) is
not just a simple hyperplane as in the Euclidean case. Whereas this is ignored
in [17], it was already argued by Tuzel et al. [30] and Carreira et al. [4] that
the bilinear pooling matrix should be first transformed to a vector space with
proper Euclidean metric and scalar product for further processing. A straight-
forward option for this transformation is the matrix logarithm as used in the
Log-Euclidean framework of [1], which directly maps PSD matrices to a vector
space [30,4].

The matrix logarithm is computed using the eigendecompositionM = UDUT

and performing a logarithmic transformation on the eigenvaluesD = diag(λ1, ..., λK).
Therefore, our Log-Euclidean layer performs the following operation:

logm(M) = U diag(log(λ1), . . . , log(λK)) UT . (6)

Note that this information does not lead to any loss in information. We follow
[4] and add a constant ε to all eigenvalues to ensure their positiveness.

Understanding the Effectiveness of the Matrix Logarithm As we will
see in our experiments, the logm-transformation can increase accuracy in animal
identification tasks. The field of topology already delivers a clear mathematical
motivation. In the following, let us additionally analyze the effectiveness of logm
from a pure machine learning point of view.

As can be seen from Eq. (6), the matrix logarithm transforms the axes length
of the ellipsoid spanned by the local descriptors fi,j,·. Small axes (eigenvalues)
below α ≈ 0.567 get a larger absolute value. Similarly, long axes above α are
shrunken with respect to their absolute value. However, the absolute value of the
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Fig. 2: Synthetic experiment comparing standard second-order pooling with
logm-transformation of the matrices.

axes influences the impact of the axes on the matrix and also on the resulting
feature vectors. Therefore, the logm-transformation can be seen as amplify-
ing axes with small variances in data. Intuitively, this is ideal for identification
tasks where small parts of the image are supposed to be discriminative. To
verify this intuition, we performed a small synthetic experiment where we sam-
pled matrices M for two classes as follows: the first class generates matrices
by sampling 30 feature descriptors gi,j,· from a bi-variate normal distribution
φ1 = N (0,diag(10−2, 10)). The second class is generated by sampling feature
vectors from φ1 with probability 1 − p and from φ2 = N ([0, ε],diag(10−2, 10))
with probability p. To establish a scenario that corresponds to challenging iden-
tification tasks, we use p = 0.1 (i.e., only 10% of the feature descriptors are
discriminative before bilinear pooling). We then train a linear SVM with 25
sampled matrices and evaluate the accuracy on 25 hold-out samples.

The results after 50 repetitions for various values of the distance ε are given
in Fig. 2. As can be seen, the logm-transformation leads to a higher accuracy
compared to standard bilinear pooling for a wide range of ε values (x-axis is in
log-scale). In the following, we investigate the effect on real-world data.

5 Datasets for Chimpanzee Identification and Beyond

For our experiments, we assembled two datasets of cropped ape faces (denoted
as C-Zoo and C-Tai). The datasets are based on previously published chim-
panzee datasets by Loos and Ernst and have been extended and specifically
curated for the task of attribute prediction for chimpanzee faces. We released
all data as well as train-test splits at http://www.inf-cv.uni-jena.de/
chimpanzee_faces.html. In the following, we briefly describe both datasets
regarding content and quality. A detailed analysis is given in Sect. S1 of the
supplementary material.

http://www.inf-cv.uni-jena.de/chimpanzee_faces.html
http://www.inf-cv.uni-jena.de/chimpanzee_faces.html
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Fig. 3: Example images of the datasets C-Zoo (top) and C-Tai (bottom).

The C-Zoo Dataset Loos and Ernst introduced a chimpanzee dataset in
[19] which originated from a collaboration with animal researchers in Leipzig.
We build on an extension of their dataset which covers 24 individuals that have
been manually labeled by experts. Provided images are of high quality, are well
exposed, and are taken without strong blurring artifacts. The final C-Zoo dataset
consists of 2,109 faces which are complemented by biologically meaningful key-
points (centers of eyes, mouth, and earlobes). Each individual is assigned into
one out of four age groups. In addition, the gender and current age of each indi-
vidual is provided as meta-information. The visual variation of contained faces
is shown in the top row of Fig. 3.

The C-Tai Dataset Loos and Ernst presented a second dataset which con-
sists of recordings of chimpanzees living in the Täı National Park in Côte d’Ivoire.
The image quality differs heavily, e.g., due to strong variations in illumination
and distance to recorded objects. Again, we build on an extension of their data
collection and obtain 5,078 chimpanzee faces which forms our second dataset.
We refer to it as C-Tai and show the visual variation in the lower part of Fig. 3.
In total, 78 individuals are recorded from 5 age groups. Unfortunately, the an-
notation quality of additional information is not as high as for the first dataset
(i.e., not every face is complemented with all attributes). In our evaluations, we
therefor use only those 4,377 faces where identity, age, age group, and gender
are provided which results in 62 different individuals.

6 Experiments

For both datasets, we were interested in the accuracy for identification of indi-
vidual chimpanzees as well as for prediction of attributes age, gender, and age
group. In the following, we analyze identification and gender estimation in de-
tail for various variants of CNN codes, fine-tuning, and post processing. Due to
the lack of space, we present evaluations regarding the estimation of age and
age groups only in the supplementary material. The developed source code for
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identification and attribute prediction including a demo-pipeline is available at
https://github.com/cvjena.

6.1 Experiments of Chimpanzee Identification

Setup – Data For each dataset, we generate five random splits using stratified
sampling with 80% for training and hold-out 20% for testing. Trained models are
evaluated using averaged class-wise recognition rates to reflect the potentially
imbalanced datasets (see supplementary material for dataset statistics).

Setup – Face Recognition Baselines The approach of Loos and Ernst [19]
resembles the current state-of-the-art for chimpanzee recognition. We addition-
ally follow by Parkhi et al. [22] who presented a state-of-the-art network for
human face recognition. Since the network with weights trained on the Labeled
Faces in the Wild (LFW) dataset [12] is publicly available, we use activations of
the network for the task of chimpanzee identification (denoted with VGGFaces).

Setup – Investigated Approaches Our first question was whether CNNs
for identification of human faces are better suited for the task of chimpanzee
identification than other networks. Hence, we apply the Caffe BVLC reference
model (denoted as BVLC AlexNet) which was originally trained for differentiat-
ing among object categories from the ImageNet challenge ILSVRC. For BVLC
AlexNet and VGGFaces, we extract activations from the layers pool5 (last
layer before fully-connected layers) and fc7 (last layer before ImageNet or LFW
scores) on the cropped face regions (denoted as CNN codes). As suggested in
[5], we L2-normalize activations before passing them to the final classifier.

In addition, we were interested in the effect of post processing of CNN activa-
tions. Hence, we apply the bilinear pooling and optionally the logm-operation.
We further increase numerical stability by normalizing the second order matrix
similar to the suggestion in [17] (denoted with “+ norm”, see Sect. S3 in the
supplementary material). On top of extracted representations, we train linear
SVMs using LibLinear [7]. The regularization parameter C is found by ten-fold
cross validation in 10−5 . . . 105.

Furthermore, we analyze the effect of fine-tuning with little data. To prevent
over-fitting, we experiment with freezing lower layers. We follow recommenda-
tions of the Caffe toolbox and apply a weight decay of 0.0005 as well as a mo-
mentum of 0.9. On C-Zoo, we fine-tune for 2,000 iterations, whereas we conduct
8,000 iterations on C-Tai to reflect the difficulty of the dataset. The learning rate
for the last layer is set to 0.001 and to 0.0001 for all remaining non-frozen layers.
Training of CNNs is done using the Caffe framework [14]. During fine-tuning,
we either follow the Caffe suggestions and use random crops of 227 px×227 px
after scaling training images to 256 px×256 px or we directly scale images to
227 px×227 px (denoted as “random crops” and “no random crops”). Results
for all settings are shown in Table 1.

Results – Application-specific Feature Design or Feature Learning
Our first question was whether representations learned from millions of images
can improve over well-designed recognition pipelines based on expert domain

https://github.com/cvjena
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Table 1: Identification results on C-Zoo and C-Tai. We report mean and stan-
dard deviation of avg. class-wise recognition rates (ARR) from 5 random splits
(given in %).

Approach C-Zoo C-Tai

Baseline: state-of-the-art
1-a) Loos and Ernst [19] 82.88± 01.52 64.35± 01.39

CNN codes + SVM
1-b) VGGFaces pool5 82.73± 00.69 67.96± 01.06
1-c) VGGFaces fc7 66.34± 02.36 53.33± 01.04
1-d) BVLC AlexNet pool5 89.17± 01.07 76.60 ± 01.25
1-e) BVLC AlexNet fc7 81.06± 01.33 67.07± 01.58

CNN Finetuning (BVLC AlexNet)
1-f) fc7-fc8, random crops 85.57± 05.81 51.08± 03.60
1-g) fc7-fc8, no random crops 91.89± 06.58 49.82± 03.58
1-h) conv1-fc8, no random crops 90.21± 01.66 70.22± 01.71

CNN codes (BVLC AlexNet) + Pooling +SVM
1-i) pool5 + bilinear 89.21± 01.59 76.13± 00.31
1-j) pool5 + bilinear + norm 89.81± 01.25 76.22± 00.66
1-k) pool5 + bilinear + norm + logm 91.99 ± 01.32 75.66± 00.86

knowledge. Comparing the state-of-the-art system by Loos et al. (1-a) against
CNN codes (1-d) already shows a noticeable increase in accuracy. Hence, learned
representations lead to clear benefits for chimpanzee identification even without
further fine-tuning or post-processing.

Results – Faces or Objects Network When comparing CNN codes from
VGGFaces (1-b and 1-c) and BVLC AlexNet (1-d and 1-e), we observe that the
faces net is clearly outperformed. This is somewhat surprising, since we expected
that the VGGFaces network could have learned typical human facial features
which should also be important to distinguish between Chimpanzee faces.

Results – Fine-tuning On the C-Zoo dataset, we observe that using no
random sub-crops clearly improves accuracy (1-f to 1-h). Tuning all layers slightly
reduces accuracy due to overfitting to the relatively small dataset. In contrast,
fine-tuning is hardly possible on the C-Tai dataset. We attribute this observation
to the strong variations in pose, lighting, and occlusion which would require more
data to learn a representative model.

Results – Bilinear Pooling Regarding bilinear pooling, we observe a sig-
nificant increase in accuracy for the Zoo dataset when the logm-operation is
applied (1-k). In contrast, results for the Tai dataset are not improved which
we again attribute to the strong image variations in the dataset. Thereby, non-
discriminative artifacts are eventually amplified by the logm transformation.
We conclude that our transformation is well suited for identification scenarios
where data is of sufficiently high quality. On C-Zoo, bilinear pooling without the
logm transformation does not lead to a performance benefit compared to using
the CNN activations directly (1-d), which we attribute to a missing vector space
embedding. Finally, we observe that the logm-results are only marginally above
results from fine-tuning on C-Zoo. However, fine-tuning requires dedicated hard-
ware (e.g., GPUs) to conduct backward passes through the network. Instead,
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Table 2: Gender estimation results on C-Zoo and C-Tai. Results are averaged
over five random splits. We report areas under ROC curves (AUC in %).

Approach C-Zoo C-Tai

Baseline: naive
2-a) majority gender 50.00± 0.00 50.00± 0.00

Identification + attribute query
2-b) using 1-k) 97.61± 0.94 89.60± 0.53

CNN codes + SVM
2-c) VGGFaces pool5 94.77± 1.38 79.78± 1.94
2-d) VGGFaces fc7 89.32± 1.00 88.00± 0.55
2-e) BVLC AlexNet pool5 96.61± 1.07 90.49± 1.23
2-f) BVLC AlexNet fc7 95.61± 1.39 86.97± 0.62

CNN codes (BVLC AlexNet) + Pooling +SVM
2-g) pool5 + bilinear 97.60± 00.48 92.97 ± 0.42
2-h) pool5 + bilinear + norm 97.81± 00.36 92.83± 0.35
2-i) pool5 + bilinear + norm + logm 98.16 ± 00.35 90.86± 0.74

Cross-Dataset
2-j) using 2-i) 70.48± 3.39 66.17± 2.73

bilinear pooling and logm only compute forward passes and post-processing
which can efficiently be performed on low-budget standard hardware.

6.2 Evaluation of Chimpanzee Gender Estimation

Setup – Data For each dataset, we split the 2,109 and 4,377 face images
by selecting 80% of each gender for training and all remaining data for model
evaluation. Results are averaged over five random splits.

Setup – Baselines, Approaches, and Generalization Since Loos et al.
[18,19] did not tackle attribute prediction, there is no obvious baseline for this
task. Nonetheless, a naive baseline arises by predicting the majority of all genders
in data (“baseline naive”). Furthermore, we can rely on the identification models
of Section 6.1 and use the age of the predicted individual averaged over all its
recordings during training (“Identification + attribute query”). In addition, we
apply CNN codes of both networks by following the same experimental setup
as in Section 6.1. Furthermore, we evaluate the effect of bilinear pooling and
the logm-operation for the task of gender prediction. We are finally interested
in the generalization abilities across datasets. Hence, we train models on logm-
transformed features using all images from one dataset and evaluate these models
on the five splits of the other dataset.

Results Results are shown in Table 2. Again, we obtain inferior results of the
faces network compared to the object categorization net. Nonetheless, we observe
that CNN codes on their own are already well suited for gender estimation (2-
c to 2-f). The strong results are partly due to the sophisticated identification
capabilities (2-a). However, bilinear pooling and the logm-operation can further
improve results (2-g to 2-i). We finally observe that the generalization across
datasets is partly possible. The clear drop in accuracy can be attributed to the
different dataset characteristics (see supplementary material).
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7 Conclusions

In this paper, we investigated several tasks which arise in animal monitoring for
biological research. More precisely, we tackled chimpanzee identification, gender
prediction, age estimation, and age group classification and provided an in-depth
study of the applicability of recently popular deep neural network architectures.
Furthermore, we applied the logm-operation as post-processing step on bilinear
CNN activations which further improved accuracy when training data is suffi-
ciently representative. Our results clearly demonstrate the effectiveness of latest
vision algorithms for zoological applications, e.g., with an identification accuracy
of ∼ 92% ARR or a gender estimation accuracy of ∼ 98% AUC.
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9. Göring, C., Rodner, E., Freytag, A., Denzler, J.: Nonparametric part transfer for
fine-grained recognition. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 2489–2496 (2014)

10. He, X., Niyog, P.: Locality preserving projections. In: Neural Information Process-
ing Systems (NIPS). vol. 16, p. 153 (2004)

11. He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.J.: Face recognition using laplacian-
faces. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
27(3), 328–340 (2005)

12. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild:
A database for studying face recognition in unconstrained environments. Tech.
Rep. 07-49, University of Massachusetts, Amherst (2007)

13. Hughes, B., Burghardt, T.: Automated identification of individual great white
sharks from unrestricted fin imagery. In: British Machine Vision Conference
(BMVC). pp. 92.1–92.14 (2015)

14. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding.
In: ACM International Conference on Multimedia. pp. 675–678 (2014)

15. Kumar, N., Belhumeur, P.N., Biswas, A., Jacobs, D.W., Kress, W.J., Lopez, I.C.,
Soares, J.V.: Leafsnap: A computer vision system for automatic plant species iden-
tification. In: European Conference on Computer Vision (ECCV). pp. 502–516
(2012)

16. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

17. Lin, T.Y., RoyChowdhury, A., Maji, S.: Bilinear cnn models for fine-grained visual
recognition. In: IEEE International Conference on Computer Vision (ICCV). pp.
1449–1457 (2015)

18. Loos, A.: Identification of great apes using gabor features and locality preserving
projections. In: ACM international workshop on Multimedia analysis for ecological
data. pp. 19–24. ACM (2012)

19. Loos, A., Ernst, A.: An automated chimpanzee identification system using face
detection and recognition. EURASIP Journal on Image and Video Processing
2013(1), 1–17 (2013)

20. Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., Le, Q.V., Ng, A.Y.: On optimiza-
tion methods for deep learning. In: International Conference on Machine Learning
(ICML). pp. 265–272 (2011)

21. O’Connell, A.F., Nichols, J.D., Karanth, K.U.: Camera traps in animal ecology:
methods and analyses. Springer Japan (2010)

22. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: British Ma-
chine Vision Conference (BMVC) (2015)

23. Rowcliffe, J.M., Carbone, C.: Surveys using camera traps: are we looking to a
brighter future? Animal Conservation 11(3), 185–186 (2008)

24. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Nature pp. 323–533 (1986)

25. Simon, M., Rodner, E.: Neural activation constellations: Unsupervised part model
discovery with convolutional networks. In: IEEE International Conference on Com-
puter Vision (ICCV) (2015)

26. Simonyan, K., Vedaldi, A., Zisserman, A.: Learning local feature descriptors using
convex optimisation. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI) 36(8), 1573–1585 (2014)



Chimpanzee Faces in the Wild 13

27. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: Closing the gap to human-
level performance in face verification. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). pp. 1701–1708 (2014)

28. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under
difficult lighting conditions. IEEE Transactions on Image Processing (TIP) 19(6),
1635–1650 (2010)

29. Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 586–591 (1991)

30. Tuzel, O., Porikli, F., Meer, P.: Pedestrian detection via classification on rieman-
nian manifolds. IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI) 30(10), 1713–1727 (2008)
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